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Understanding the Impact of
Decision Making on Robustness
During Complex System Design:
More Resilient Power Systems
Robust design strategies continue to be relevant during concept-stage complex system
design to minimize the impact of uncertainty in system performance due to uncontrollable
external failure events. Historical system failures such as the 2003 North American
blackout and the 2011 Arizona-Southern California Outages show that decision making,
during a cascading failure, can significantly contribute to a failure’s magnitude. In this
paper, a scalable, model-based design approach is presented to optimize the quantity and
location of decision-making agents in a complex system, to minimize performance loss
variability after a cascading failure, regardless of where the fault originated in the sys-
tem. The result is a computational model that enables designers to explore concept-stage
design tradeoffs based on individual risk attitudes (RA) for system performance and per-
formance variability, after a failure. The IEEE RTS-96 power system test case is used to
evaluate this method, and the results reveal key topological locations vulnerable to
cascading failures, that should not be associated with critical operations. This work illus-
trates the importance of considering decision making when evaluating system level
tradeoffs, supporting robust design. [DOI: 10.1115/1.4044471]

Introduction and Motivation

As the demand for reliable complex infrastructure systems
(e.g., microgrids, satellite networks, etc.) becomes increasingly
critical, designers are looking for computational approaches to
evaluate concept-stage designs. An advantage of computational
design strategies is the ability for designers to explore key per-
formance tradeoffs early in the design phase when design modifi-
cations are less costly [1]. This is of particular interest in complex
infrastructure systems, as the network topology is typically hetero-
geneous and distributed in nature, resulting in a system that is
vulnerable to cascading failure due to relatively small sets of ini-
tiating events [2–8]. Since complex infrastructure systems operate
in highly stochastic environments, it is not cost-effective (or even
possible) to design for total immunity to uncertain failure events
[9]. Alternatively, this research asserts that systems must be
designed for system robustness by incorporating the effects of

fault propagation into optimization objectives, evaluating the per-
formance of the resultant degraded system state.

Significant barriers exist to creating accurate system models for
relevant time-scales of complex infrastructure systems. These bar-
riers include subsystem interactions (e.g., mechanical, electrical),
environmental uncertainty, changing topology, emergent behav-
ior, and decision making during a failure event [10–12]. While
each of these detriments to system performance has been explored
extensively independent of domain, addressing them concurrently
within a highly nonlinear and heterogeneous complex system cre-
ates a challenge during concept-stage design. For example, the
Blackout of 2003 and the 2011 Arizona-Southern California Out-
ages highlight the vulnerability of existing infrastructure systems
such as the North American power grid (NAPG) [13–15]. Beyond
hardware and software failures, system operator decision making
contributed to the magnitude of the Blackout [16,17]. Although
the cascading failure occurred over approximately 7 h, independ-
ent regions struggled to obtain operational information from adja-
cent utilities, forcing system operators to make uninformed
decisions to protect their local network. This lack of a comprehen-
sive, wide-area communication mechanism for system level
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decision making throughout the NAPG interconnections is primar-
ily a function of federal deregulation policies [18–21].

While control strategies can be implemented into the design of
these systems (e.g., protective relays, intelligent electronic devi-
ces) to mitigate critical component failures, inherent system com-
plexity provides a barrier for designers to identify (and account
for) predominant failure scenarios. Leveraging the input of human
agents (i.e., system operators) is also a solution for failure resolu-
tion; however, it is difficult to identify and evaluate the impact of
their role in the system. For example, key considerations include
agent location, number of agents, and agent control variables.
Since agents also can exert free will during an emergency
decision-making scenario, their range of control and position
within the system must be constrained.

This paper examines the system level impact of decision-
making during a failure event and suggests that designers can
incorporate decision making into concept-stage models to evalu-
ate system robustness. Robustness is modeled as the invariability
of the resultant steady-state system performance after a cascading
failure has occurred.

Contributions

Current literature formally addressing robustness during
concept-stage complex infrastructure system design presents an
opportunity for capturing the impact of decision making during a
cascading failure event. This is primarily because many robust
design methods focus on minimizing performance variability of
the system during fully functional operation, and do not examine
the uncertainties due to decision making contributing to cascading
failure. This distinction is highly significant as complex systems
are often designed and operated at a low factor of safety. This
work directly addresses this concern, postulating that robust
design strategies can be used to optimize decision making during
failure events, subsequently minimizing the resultant performance
variability and increasing robustness.

Key Improvements and Benefits to Complex System Design.
In previous work, Piacenza et al. [22,23] consider the problem of
designing an optimal network topology that is robust to uncertain
failure events. That approach enabled a concept-stage model that
allowed designers to create a system topology which predictably
met minimum desired performance requirements.

In this research, a model-based design approach is presented
to optimize the quantity and location of decision-making agents
in a complex system, to minimize performance loss variability
after a cascading failure, regardless of where the fault origi-
nated in the system. The result is a computational model that ena-
bles designers to explore concept-stage design tradeoffs based on
individual risk attitudes (RA) for system performance and per-
formance variability, after a failure.

Background

There is an abundance of methods aimed at analyzing failure
propagation and reliability in complex systems [24–34]. A key
challenge, however, is creating designs that are robust to the vari-
ous types of failures and uncertainties present in complex and
often largely distributed infrastructure systems.

Robustness is defined in complex systems literature as the abil-
ity of a system to behave as intended, despite the effects of uncer-
tainty from both internal and external sources [35,36]. External
sources of uncertainty (i.e., noise factors) are typically represented
as variations in the environment that influence intended system
performance, while internal sources (i.e., control factors) can
include performance variations often resulting from system level
decision making during a failure event (Fig. 1).

To understand failure propagation in complex infrastructure
systems, current methods have employed both agent-based and
social network analysis for predicting emergent system behavior

[5,37–39]. However, agent-based and network theory performance
metrics (e.g., agent evaluation functions, node degree, centrality)
are abstractions of actual complex systems, which may limit their
ability to accurately assess the impact of cascading failures when
creating reliable designs.

Currently, there is an opportunity to further increase robustness
during concept-stage complex system design by examining the
impact of decision-making on system robustness. This work
builds on current complex system design methods, discussed next.

Robust Design Using Network Theory and Topological
Graph Models. Based on the distributed nature of many complex
infrastructure systems, understanding topological effects is impor-
tant when designing for system robustness. Current literature
addresses the importance of considering topology during system
optimization, often drawing from network theory where networks
are represented mathematically, often with an adjacency matrix
[3,4,37,40–43]. Piacenza et al. explore the idea of increasing sys-
tem robustness in a complex infrastructure system using topology
optimization [22]. In this work, robustness was quantified by min-
imizing the variation in degraded system performance after a fail-
ure event occurred. Other key network performance indices
studied in the literature can be primarily categorized by three
major properties: average distance between nodes, the tendency of
vertices to be locally interconnected, and distribution of degrees
of vertices [6,44–47].

Topological graph models are flexible and can apply to differ-
ent domains. For example, Kinney et al. modeled a power system
case study with an adjacency matrix, where each node represented
either a generation or demand component in a network and arcs
connecting the nodes represented connectivity [40]. In that work,
failures were examined by removal of a single node, which trig-
gered an overload cascade in the network. Similar methods are
used by Duenas-Osorio and Vemuru, where total connectivity loss
measured network performance [48]. Ash and Newth examine the
optimization of complex networks with respect to the average effi-
ciency of the network, which was first introduced by Ash and
Newth [2] and Crucitti et al. [12]. While these types of topological
measures provide valuable information about a specific network,
it is important to recognize that these mathematical models are
abstractions of complex systems. Hines et al. have addressed this
concern directly, comparatively evaluating topological and elec-
trical metrics within the same system to predict failure magnitudes
in standard test cases and real utility models [4]. Their work con-
cluded that while exclusively using topological measures can pro-
vide general information about a system’s reliability, they can be
misleading due to the level of abstraction and should be used in
conjunction with a physics-based model. Dobson et al. used a
probabilistic analysis based on past power system performance to
suggest that the frequency of large blackouts is governed by a
power law. In this work, the author asserted that some methods of
suppressing subsystem failures could ultimately increase the risk
of uncontrollable system-level failures [49].

Recent work by the IEEE working group on cascading failure
emphasized the wide variety of mechanisms involved in the

Fig. 1 Parameter diagram for complex infrastructure systems
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propagation of cascades as well as the challenges to find agree-
ment on the principal assumptions of quasi-steady-state modeling
tools [50].

Decision-Making Considerations in Complex System
Design. While many cascading system failures begin as a result
of external occurrences such as extreme environmental conditions
(e.g., above normal summer temperature in the Northeast U.S.
during the Blackout), case studies show that human-in-the-loop
decision-making has the potential to affect the resultant system
outcome [51]. The overarching challenge of complex infrastruc-
ture design is to understand system level interactions, and how an
agent (or set of agents) can impact the subsequent emergent sys-
tem behavior, during early design.

Watts examined this concept from a sociology perspective, cit-
ing parallels to engineered systems [52]. In this work, he postu-
lated that individuals in a population exhibit herd-like behavior
because they are making decisions based on the actions of other
individuals rather than relying on their own information about the
problem. This is a concern in agent-based control strategies for
complex systems, as agents must make decisions based on infor-
mation about both their local and global network. Hines and
Talukdar examined this relationship by developing a method to
create a social network of autonomous agents to solve a global
control problem with limited communication abilities [53]. This
approach used distributed model predictive control and coopera-
tion to minimize cascading failure in the IEEE reliability test sys-
tem. Where nodes represented substations, and lines represented
either transmission lines or transformers. However, the approach
requires an agent to be present at each location (i.e., node) of the
system and, hence, is not an economically efficient solution or
even possible in many complex systems. Other approaches also
draw from social network analysis, where reliability indicators
rely heavily on high-level system abstractions [26,34,37].

Alternatively, decision-based design strategies have also been
examined for estimating agent decision-making behavior in com-
plex systems. Sha and Panchal have explored this concept by com-
paring the benefits of generalized preferential attachment, a
statistical regression-based approach, and multinomial logit choice
modeling [54]. Both multinomial and nested logit models have
been used extensively to predict individuals’ decisions in a variety
of domains including sociology, economics, and civil engineering
(e.g., traffic networks) [55]. The barrier to using these methods in
early design is the reliance on historical behavior required to gener-
ate a utility function capable of predicting behavior.

Methodology

The research aims to capture the impact of decision making
during a cascading failure event. For this work, decision making
is represented as a control factor (as opposed to a noise factor),
since decision-making agents are strategically placed during sys-
tem design. A nested optimization framework is presented that
identifies design tradeoffs for performance, performance variabil-
ity, and the number of agents in the system. The outer-loop opti-
mization identifies quasi-steady-state system conditions during
cascading failure (Fig. 2).

MATPOWER performs the inner-loop quasi-steady-state simula-
tion, calculating instantaneous power flow based on physical rela-
tionships, such as generation, demand, and fundamental electrical
laws. The inner-loop consequently outputs system performance
values based on decision variables for the quantity and location of
agents to the outer-loop optimization objectives. This allows a
designer to explore Pareto solutions, based on their requirements
and preferences.

Nested Optimization Framework. The framework presented
here is composed of an inner-loop model (i.e., quasi-steady state
decoupled power flow (DC-PF) simulation) nested within an

outer-loop model (i.e., heuristic optimization) to estimate system
performance as illustrated in Fig. 2. The outer-loop optimization
objective is based on the ability of a degraded system to predict-
ably satisfy performance requirements after a cascading failure
has occurred. Robustness is incorporated into the objective by
considering the variation of expected demand (DE) in the solution
(Eq. (1)).

find Aij

minimize

f1 ¼ agðAijÞ
f2 ¼ �DEðAijÞ
f3 ¼ r2

DE
ðAijÞ

subject to

g1 :
X

ag � Ntotal � 0

h1 : Agents per Node ¼ 1

h2 : As � Pðm;
X

agÞ ¼ 0

(1)

where the decision variable (AijÞ is an adjacency matrix represent-
ing the number and location of agents ðagÞ in the system, ag is a
vector that represents the number of agents at each location, r2

DE

is the expected demand variance, and Pðm;
P

agÞ is
P

ag permu-
tations of m, where

P
ag is the number of agents taken from a set

of agents m ¼ ½a1; a2; a3… am�. In this formulation, no weights are
assigned to the objectives, so all Pareto optimal solutions can be
evaluated. Ntotal is the number of nodes in the system, limiting the
overall quantity of possible agents

P
ag. As represents the set of

discrete load shedding percentage possibilities each agent may
select during a cascading failure scenario. Constraint h1 indicates
that only one agent may exist at a particular node.

The inner-loop simulation is the DC-PF analysis, is nested
within the outer-loop optimization to evaluate the steady-state
conditions of the system during cascading. This simplified power
flow is performed by solving a set of linear equations to find the
system voltage angles x ¼ hi for each bus (with the exception of
the reference bus):

Bdcx� Pdc ¼ 0 (2)

where Pdc is the vector consisting of active power injections, and
Bdc the DC connectivity matrix (derived from system admittan-
ces). Complete details for this formulation can be found in the
MATPOWER user’s manual [56].

By nesting the DC-PF of the test case within the system level
optimization, each instantaneous power flow analysis can be per-
formed as the network topology changes during a cascading
failure.

Modeling Decision Making in Complex Systems. During the
2003 Blackout, decisions made by system operators contributed to
the magnitude of this historic failure event and influenced the sys-
tem’s emergent behavior. This observation provides insight when

Fig. 2 Nested optimization framework
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attempting to model decision making during concept-stage system
design. Drawing from existing physical design elements of the
NAPG, Fig. 3 represents a highly simplified visual abstraction of
a power system. This system consists of three connected subsys-
tems, each containing a generator, and multiple demand and inter-
connection nodes. In addition, a decision-making agent (e.g.,
human, computer) is located within each subsystem.

During normal operation, subsystem generators dynamically
adjust power output to match demand fluctuations. However, in
the case of an unexpected line failure, this subsystem level of con-
trol can be inadequate to prevent line overloading elsewhere in
the subsystem and can subsequently lead to uncontrollable cascad-
ing failures. Alternatively, controlled failure mitigation strategies
such as strategic load shedding can minimize line overloading.
This is achieved by an agent strategically reducing the demand
normally required by the nodes in a subsystem or region. How-
ever, the design trade-off is that load shedding reduces the power
being transferred through a subsystem. Load shedding is achieved
in practice by exercising a load shedding agreement, where a com-
mercial customer voluntarily curtails power demand.

As a strategy for increasing system robustness during concept
stage design, this research explores the benefits of strategically
placing agents within a given network. In the event of a line fail-
ure, each agent has the ability to shed a fixed percentage of
demand load for their local region, potentially reducing the mag-
nitude of system failure during cascading.

System Level Optimization. The outer-loop optimization is
performed using a multi-objective simulated annealing (SA)
algorithm to evaluate the system level objectives [57]. The SA
algorithm was selected as it avoids getting trapped in local optima
by accepting deteriorated solutions. Czyz _zak and Jaszkiewicz
developed pareto simulated annealing to adopt this search for
multi-objective optimization problems [58]. This search is con-
ceptually identical to the single-objective SA but, instead of using
one candidate to represent the final solution, pareto simulated
annealing uses a set of interacting solutions at each iteration [59].

In this research, an SA strategy is performed that perturbs an
individual solution at each iteration. If the perturbed solution is
not dominated by its preceding solutions, it enters the nondomi-
nated set of Pareto fronts, and this set gets updated accordingly.
The next seed of SA is selected randomly from the updated set of
Pareto fronts. If the perturbed solution is dominated by at least
one of its preceding solutions, it will not enter the Pareto front set.
However, it will still be selected for the continuation of the
algorithm with the following probability:

P Ax;Ay;Tð Þ ¼ min 1; exp

PNSA

j¼1

Ax � Ayð Þ

T

0
B@

1
CA

8><
>:

9>=
>; (3)

where the adjacency matrix (AyÞ is the solution obtained by per-
turbing the adjacency matrix ðAxÞ, NSA is the total number of
objective functions, and T is the temperature at each iteration.
Details of the SA algorithm are as follows:

� Initial temperature¼ 100
� Stop temperature¼ 1� 10�3

� Cooling rate¼ 0.95

Optimization Framework Process Flow. To clearly illustrate
the steps performed during the nested optimization model, a pro-
cess flow diagram is presented (Fig. 4).

First, a test case including key system information (e.g., topol-
ogy, line capacities) is imported, and the lines with the top 10%
largest capacities are identified. Next, an initial random quantity
of agents are generated and randomly assigned to a position using
an adjacency matrix. This initial agent placement uses the fixed
topology of the imported test case. Agents are then randomly
assigned a discrete load shedding percentage. Line removal is per-
formed either iteratively or randomly based on user preference,
and the DC-PF is calculated using MATPOWER. The redistribution
of power in the test case may cause some lines to exceed their
capacity based on the fixed parameter factor of safety, potentially
initiating a cascading failure. To mitigate this failure, the agents
placed at a node location (requiring a fixed demand) intersecting a
line at risk of exceeding its capacity will shed their load based on
the previously assigned percentage. This shedding may or may
not prevent a line failure. The DC-PF and load redistribution loop
are repeated until all opportunities for agent load shedding have
been exhausted, and the system reaches a steady-state where
demand load does not exceed capacity at any line. Although agent
load shedding may prevent an overload, it will also reduce the
total demand satisfied. This trade-off is incorporated into the
system level optimization objective (Eq. (1)).

In practice, it is possible for a power system network to become
partially disconnected during a cascading failure, resulting in mul-
tiple independent subsystems, or islands [60]. This action is cap-
tured during the simulation, and the DC-PF is performed for each
disconnected subnetwork.

Since the remaining lines must support the load from the fail-
ure, the new distribution of power flows may cause other lines to
exceed line limits and trip their associated relays, initiating a cas-
cading failure. Df is the remaining demand being satisfied after
cascading failure occurs, and the system is operating at a degraded
steady-state. Expected demand (DE) is calculated based on the
average of resultant demand for each of the failure scenarios
(Eq. (2)), where n is the total number of lines removed.

The resultant system level demand satisfied (DiÞ for each line
failure scenario is calculated by summing the demand satisfied for
each island (Eq. (4)). It should be noted that an island might not
include a generator, subsequently resulting in a total subnetwork
failure.

Di ¼
Xn

i¼1

Din (4)

Line removal is performed until the SA algorithm converges, build-
ing on random removal methods from existing literature [2]. These
solutions are then used to evaluate the mean of expected demand
(lDE

) and the variance of Expected Demand (r2
DE

). Based on the
system level objectives of Eq. (1), the SA algorithm outputs a set
of Pareto optimal solutions. These solutions allow the designer to
explore the tradeoffs between performance, performance variabil-
ity, and number of agents. In this method, the number of agents is
captured by a cost variable, since there would be implementation
and operations cost associated with their placement.

Test Case Implementation and Results

RTS-96 Case Study: Physical System Properties. The RTS-
96 is a 73 node test case that illustrates the method describedFig. 3 Simplified power system model visualization
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earlier [61]. In this case, demand nodes have an associated load
(in MW) that must be satisfied by the generation portfolio to per-
form nominally. Power generation values are based on energy
production at that node, and demand values are derived from the
total power required to service a given area. Quasi-steady-state
simulation assumes no transients; thus, if all elements are con-
nected, three-phase balanced, and if machines are operating near
nominal frequency, power can flow unaffected between both types
of nodes.

In this model, each line has a maximum available capacity for
power transmission, and an associated line load based on the num-
ber of nodes that are injecting power. Line load (LLoad) is the
amount of active power flowing through a line. Line capacity
(LCap) is defined as the maximum active power (in MW) that can
flow through an individual line before a failure may occur (or a
relay takes the line out of service), based on a fixed parameter fac-
tor of safety (c) (Eq. (5))

LCap ¼ ð1þ cÞ � LLoad (5)

To initiate failure in the model, a single line is removed from the
test case topology. While many power system topologies are
designed to handle a single element fault (i.e., n� 1), this
approach is intended to extend to different domains, where a sin-
gle fault can result in uncontrollable cascading failure [62]. In this
work, line removal is conducted in either one of two ways. First,
line removal could be performed randomly, where each line has
an equal probability of being removed. Future work in both power
systems and other domains will consider incorporating failure dis-
tributions based on historical component reliability data. Next,
line removal could be performed iteratively for each of the lines
with the 10% highest capacity lines in the test case. This 10%
highest capacity method is chosen as an alternative to a random
search in an effort to test the hypothesis that removing the highest
capacity lines will have the greatest impact on system
performance.

Line removal is performed where LLoad ðtÞ is the initial line load
at time t, and its value is based on the demand node values associ-
ated with it. In this model, multiple generators can satisfy a single
node demand. Since the remaining lines must support the load
from the failure, the new distribution of power flows may cause
other lines to exceed line limits and trip their associated relays,
initiating a cascading failure. Df is the remaining demand being
satisfied after cascading failure occurs, and the system is operating
at a degraded steady-state. Expected demand (DE) is calculated
based on the average of resultant demand for each of the failure
scenarios (Eq. (2))

DE ¼
P

Df1…n

n
(6)

where n is the number of failure iterations.

Test Case Experiments. For the RTS-96 test case, five key
experiments are presented that highlight the method of this paper
(Table 1). In experiment 1, the 10% highest capacity lines are
selected for iterative line removal, and discrete agent load shed-
ding values are either 1%, 10%, 25%, 40%, 50%, or 75%. Experi-
ment 2 considers all lines for random removal (not just the ones
with the 10% highest capacity), and possible agent load shedding
can be 10% only. Experiment 3 also considers all lines for random
removal but uses discrete load shedding values of 1%, 10%, 25%,
40%, 50%, or 75%. Experiments 4 and 5 mirror experiments 1
and 3, respectively, however, there is no load shedding, so the
RTS-96 test case responds to line failure as it would without any
decision-based changes to the system design. Subsequently,
experiments 4 and 5 were performed to provide baseline values
for expected demand and expected demand variance, when no
load shedding was performed.

Results Interpretation. To explore the hypothesis that system
robustness is represented as a function of performance

Fig. 4 Nested optimization framework process flow
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invariability, the design solution tradeoffs for experiments 1–3 are
presented in Figs. 5–7, which aids to visualize the relationship
between the quantity of agents (ag) placed in the system, the
expected demand (lDE

), and the expected demand variance (r2
DE

).
In Figs. 5(a), 6(a), and 7(a), there is a clear trade-off, showing
that as the quantity of Agents increases, Variance decreases. How-
ever, since adding Agents to the system’s design adds opportuni-
ties for load shedding during a cascading failure, a greater
quantity of agents also reduces expected demand (Figs. 5(b), 6(b),
and 7(b)). So, a designer could use these results to assist in decid-
ing how much minimum system performance is required to sup-
port critical operations, and how much performance variation they
are able to tolerate in the event of a failure.

To examine the above conclusion numerically, the lowest
expected demand variance (i.e., robust) designs from experiments
1–5 are presented in Table 2. For reference, the demand value of
the standard RTS-96 DC-PF (8550 MW) is also provided in
Table 2 [61]. In these selected results, the most robust (i.e., low
variance) design is achieved during experiment 2, where 26 indi-
vidual agents are utilized, and load shedding is discretely set to
10%. However, this design is not only the most expensive in terms
of agents, but it also has the lowest value for expected demand. In
comparison, experiment 1 has the highest variance (over eight
times experiment 2) and the lowest number of individual agents
(6). Experiment 1 also has a slightly higher expected demand
value (3.3% higher than experiment 2). Experiment 3 presents an
alternative solution that could be considered a compromise

Table 1 RTS-96 test case experiment matrix

Experiment
number

Random line
failure

Iterative line
failure

10% highest
capacity lines

Shedding
percentage
(10% Only)

Shedding
percentage (1%, 10%,
25%, 40%, 50%, 75%)

1 X X X
2 X X
3 X X
4 X X NA NA
5 X NA NA

Fig. 5 Pareto optimal solutions for the outer-loop optimization
of experiment 1

Fig. 6 Pareto optimal solutions for the outer-loop optimization
of experiment 2

021001-6 / Vol. 6, JUNE 2020 Transactions of the ASME



between experiments 1 and 2, trading off between the number of
agents and variance.

To highlight the merits of this method, experiments 4 and 5 dis-
play values for expected demand variance when no agents are
placed in the system, and these values are significantly larger than
experiments 1–3. These results suggest that strategically placing
decision making agents throughout an infrastructure system (e.g.,
microgrid) during the concept design stage may decrease the
uncertainty associated with failure magnitude, potentially increas-
ing robustness. Although, concept-stage design decisions are often
based on individual/organizational risk attitudes, discussed next.

Risk Attitudes in Engineering Design. Throughout the design
process, engineers will often make decisions based on their indi-
vidual RA, or the risk attitude of their organization [62–65]. In the
context of this research, a risk-tolerant individual may be willing
to accept a higher level of performance variability, in exchange
for a less costly design. However, a risk-averse individual may be
willing to significantly increase design cost in order to minimize
performance variability. Table 2 displays the likely risk attitudes
associated with each solution. The three designs presented corre-
spond with an individual’s tolerance for risk aversion (i.e., low,
moderate, high). Further exploration of this trend will be explored
when investigating larger networks in future work.

Agent Placement Within the RTS-96 Test Case Topology. In
terms of network topology, Figs. 8–10 help to illustrate how the
low-variance solutions from experiments 1–3 are implemented
within the RTS-96 test case. Also, the RTS-96 test case is com-
prised of three similar subtopologies linked together (i.e., nodes

Table 2 Robust design solutions and RAs for experiments 1–5

Experiment
number

Expected
demand

variance ðr2
DE

)

Expected
demand
ðlDE
Þ (MW)

Number
of

agents (agÞ RA

1 66,327 1945 6 Low RA
2 8238 1883 26 High RA
3 19,215 2339 18 Moderate RA
4 394,142 1832 0 NA
5 92,318 2086 0 NA
RTS-96 DC-PF NA 8550 NA NA

Fig. 8 RTS-96 topology displaying agent locations and load shedding percentages for experiment 1 (iterative line removal of
the 10% highest capacity lines)

Fig. 7 Pareto optimal solutions for the outer-loop optimization
of experiment 3
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116, 216, and 316 have common attributes), which helps to iden-
tify critical locations/nodes in the system. For example, shedding
occurs in two of the three experiments in nodes 102, 107, 114,
119, 120, 201, 208, 216, 219, 302, 303, 304, 305, and 314. And,
shedding occurs at nodes 113 and 215 in all three experiments.
These topological shedding locations reveal key locations in the
network subject to capacity overload stemming from cascading
failures that originate elsewhere in the system. From a system vul-
nerability standpoint, these locations (especially 113 and 215)
should not be associated with critical system operations.

Besides guiding the decisions on investments and upgrades to
mitigate the cascading, this research also informs how to imple-
ment load shedding in practice. Current power system substation
technologies (for example, a real-time automation controller) are
able to implement load shedding schemes, however, there are still
open questions about the level and location of these devices and
how they can coordinate their protective actions.

Conclusions and Future Work

The 2003 Blackout illustrates how system-level decision making
during a cascading fault event can inadvertently contribute to

significant system failure. As complex systems operate in highly
stochastic environments, systems must be designed for robustness
by incorporating the effects of fault propagation into optimization
objectives, evaluating the performance of the resultant degraded
system state. This paper presents a model-based design approach
for the concept-stage robust design of complex infrastructure sys-
tems that captures the impact of decision making during a cascad-
ing failure event. Robustness is represented as the invariability of
system performance despite the impact of failures due to uncertain
environmental events. This approach enables a system design that
meets minimum desired performance requirements, even during
degraded operation. The formulated approach considers decision
making when designing for system robustness, consequently pro-
viding a set of design alternatives based on individual risk attitudes.

The design framework presented shows promise, and there are
several opportunities for future work. The first step will be address-
ing scalability. The results from the RTS-96 test case do provide
insight into emergent system behavior due to agent interaction. How-
ever, the relationships identified may not remain consistent in larger
networks. A representation of the Poland power grid often studied in
the power systems community will be used for this purpose.

Fig. 10 RTS-96 topology displaying agent locations and load shedding percentages for experiment 3

Fig. 9 RTS-96 topology displaying agent locations and load shedding percentages for experiment 2
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Next, expanding the range of agent control and decision-
making ability will significantly increase the simulation fidelity.
The current load shedding strategy in the model is based on exist-
ing power system best practices of blanket load shedding in a spe-
cific region. For example, a reinforcement learning strategy that
offers an agent multiple discrete choices could increase the num-
ber of solutions in the Pareto frontier. Using machine learning
algorithms, a more appropriate design choice based on system
requirements, and potentially further reduced performance vari-
ability, can be selected. This can be achieved by generalizing a
learned model from the available discrete choices.

Finally, the authors plan to apply this approach to other com-
plex infrastructure systems. For example, other domains such as
regional communication systems, traffic networks, and satellite
networks may benefit in terms of robustness from strategically
placed decision-making agents.
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Nomenclature

ag ¼ vector representing the number of agents in the
system

As ¼ represents the set of discrete load shedding percent-
age possibilities

Ax ¼ initial adjacency matrix in simulated annealing
algorithm

Ay ¼ solution obtained by perturbing the adjacency
matrix Ax

Aij ¼ adjacency matrix representing the number and
location of agents ðagÞ

Bdc ¼ imaginary portion of the nodal admittance matrix
DE ¼ expected demand: average of resultant demand val-

ues that are satisfied after a failure has occurred
Df ¼ resultant demand that is satisfied after a failure has

occurred
Di ¼ system level demand satisfied
g1 ¼ optimization inequality constraint
h1 ¼ optimization equality constraint

i ¼ bus index
LCap ¼ maximum power that can flow through an individ-

ual line
LLoad ¼ amount of active power flowing through a line

LLoad ðtÞ ¼ initial line load at a given time t
m ¼ ½a1; a2; a3… am�
m ¼ number of agents in a set
n ¼ number of failure iterations

NSA ¼ number of objective functions in simulated anneal-
ing algorithm

NTotal ¼ number of nodes in the system
Pðm;

P
agÞ ¼ permutations of m where

P
ag is the number of

agents taken from a set of agents
Pdc ¼ vector of active power injections for each bus

t ¼ instantaneous time associated with a line load
T ¼ temperature at each iteration of the simulated

annealing algorithm
x ¼ unknown voltage angles x ¼ hi for each bus
c ¼ parameter for line factor of safety
h ¼ voltage angle

lDE
¼ mean of expected demand

r2
DE
¼ expected demand variance
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