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Abstract: Ocean wave energy is a developing industry that provides many attractive qualities for utilities to meet future energy
demand. Therefore, it is important to investigate and understand the impact that ocean wave energy has on power system reliability.
Reliability assessment techniques have been applied to systems with variable amounts of wind penetration, but as of yet, no study
has explored the impacts that ocean wave energy may have on the reliability of power grids. Our approach to this problem applies a
sequential Monte Carlo (MC) technique coupled with a Well-Being analysis approach to capture the seasonal variations associated
with the ocean and then calculate key loss-of-load indices. We benchmark this method on the IEEE Reliability Test System 1996
(RTS-96) and integrate synthesized ocean wave energy farms throughout the system. Our results suggest that wave energy
results in a small decrease on the reliability of the power system, however this change does not result in additional failure states
as compared to the base system. Additionally, we are able to mitigate marginal system states with a relatively small increase in
system capacity.

1 Introduction

Integration of renewable energy has been a topic of great discourse
as the public view changes about our dependence on fossil fuels.
As a result of this, and decreasing costs, renewable resources are
being installed around the globe at an unprecedented rate [1]. This
increasingly widespread adoption does not go unbounded as there
are several challenges and limitations that need to be overcome, of
which the most commonly discussed is resource variability [2]. The
shift from fossil fuels now means that our energy supply is weather
dependent. In March of 2015, Germany experienced a solar eclipse
which created a need of 10 GW to be ramped over the course of a just
a few hours [3]. Problems such as these suggest that it is necessary to
conduct comprehensive grid integration studies with modern models
that incorporate the inherent variability associated with renewable
energy.

Ocean wave energy is a relatively new energy source with
potential to satisfy much of our modern power demand. Since the
wave industries inception in the 1970s, researchers at the Pacific
Marine Energy Center have focused their efforts on device design,
energy characterization, and environmental impact among other
things [4]. As a result, studies into how wave energy devices will
interact with the local energy infrastructure are very limited. Early
in 2010, authors O’Sullivan et. al. [5] examined technical, economic,
and regulatory challenges of developing a grid interconnected wave
energy farm. The results of their efforts was a cost model which
indicated that a 20 MW wave farm facility would cost approximately
e19 million. Authors M. Santos et. al. [6] produced several case
studies which looked into various technical aspects of the grid
integration of marine and tidal energy. Such as, dynamic modeling,
load flow analysis, voltage stability, and rotor angle stability to
name a few. More recently in 2019, however, researchers in [7]
have completed an extensive investigation to the current limiting
factors of the wave energy technology. They suggest that, although
the technology is not currently cost competitive, advances in design
and relaxation of grid codes would change this. In a more technical
assessment, references [8, 9] studied power quality issues, such
as voltage limits, flicker, low voltage ride through, and potential
harmonic injections from power electronics. In [10], a wave-to-wire
model was created and control strategies were developed to mitigate

WECs impact to the point of common coupling. To the best of the
authors knowledge, however, there are no studies that examine the
impact wave energy has on power system reliability.

Power system reliability is, in essence, the requirement for the
grid to meet both the generation and transmission capacity needs
of its customers. As many grid planners know, having a variable
resource limits their ability to do so. To mitigate these issues,
the system operators who manage the grid require that all wind
plants manage accurate wind real-time and day-ahead forecasts.
Therefore, any reliability assessment of renewable energy sources
need to be assessed in a sequential fashion. That is, account for
time changes in generation capacity. To address this and the research
gap in current wave energy trends, this paper will use the system
Well-Being analysis [11–15] coupled with a sequential Monte
Carlo (MC) method of system state generation. As an extension to
traditional reliability methods, the Well-Being Analysis categorizes
each operating system state–as generated by the sequential MC
method–as either being healthy, marginal, or at-risk. Further, the
system Well-Being Analysis incorporates a deterministic criteria
into the probabilistic assessment. In doing so, this step allows system
planners to incorporate personal experience into the reliability
assessment. In this paper, for instance, we use the loss of the largest
online generator, which has been adopted in several studies [15, 16],
to assess the contingency reserve of the power system.

Over the years, the Well-Being framework has seen success in
successfully assessing the reliability impact of several renewable
energy sources. For example, References [17, 18] applied a auto-
regressive moving average (ARMA) model to develop the wind-
speed power curves used for their MC analysis. A similar approach
was used in Reference [15] but instead proposes an alternative
to the MC method by computing the capacity outage probability
table (COPT), i.e., a discretized probability distribution function for
generation capacity. In addition to wind modeling, researchers Atwa
et. al. [19] modelled an hourly clearness index to compute the solar
irradiance and solar photovoltaic production. The key observation to
make from this literature is that the accuracy of the assessment lies
in the level of detail in the renewable energy model.

With this in mind, the main contribution this paper provides is
to quantify the impact, if any, that utility scale ocean wave energy
devices have on the transmission system’s ability to deliver reliable
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power. To this end, we leverage mathematical models for WEC
devices developed in [20]. While this is elaborated upon in Section 3,
this methodology leverages data from a network of meteorological
and oceanographic sensors–called the National Data Buoy Center
(NDBC) [21]–to generate a wave power time-series at sub-hourly
intervals. This time-series is then used to build probabilistic models
for the reliability assessment (Well-Being Analysis) of the power
system. In addition to estimating any potential benefit and/or risk
to reliability, we examine how much additional grid support is
necessary to successfully integrate wave energy.

2 Power System Reliability

Power system reliability refers to the ability of the power system
to deliver expected service through both planned and unplanned
events. This definition implicitly means that the power system will:
1) have enough generation and transmission capacity to meet peak
demand, 2) maintain a steady system voltage and frequency, and 3)
contains adequate flexibility to handle random load and generation
variations. This last characteristic highlights the major issue in that
the assessment of power system reliability requires probabilistic
methods and tools. Typically, these methods take an analytical or
numerical approach to solve the reliability problem.

The analytical method involves creating a state representation,
most commonly using Markov models, and solving using a recursive
and iterative process [22]. Analytical methods, however, become
computationally burdensome as the size of the power system and
number of random variables included in the analysis increases.
Furthermore, a state based approach cannot be directly applied
to system with renewable energy. For example, developing a
Markov model which accounts for random weather changes will be
complex and have many assumptions. This, however, has not stopped
researchers as Reference [23] has shown it is possible to accurately
develop a state based model for large wind system.

Numerical approaches to power system reliability often take
the form of MC methods. Literature has suggested that when the
power system is complex—as is typical in medium to large power
systems—a MC approach simplifies the reliability problem at the
cost of added computational complexity [24]. MC methods are
classified as either non-sequential or sequential. In the former,
states for each component are sampled, and each system state is
considered independent from each other. Conversely, sequential
sampling techniques capture the chronological operation cycles of
each component and the system as a whole. In both non-sequential
and sequential techniques, the status of each system component is
sampled based on a uniformly distributed random number U [0, 1].

In the non-sequential MC method, component and system states
are calculated using

Si =

{
Online, if Ui ≥ FORi

Offline, if Ui < FORi
(1)

and

FORi =
MTTRi

MTTRi + MTTFi
(2)

where Si, FORi, MTTRi, and MTTFi are the state, Forced Outage
Rate (FOR), Mean Time to Repair (MTTR), and Mean Time
to Fail (MTTF) of the ith system component, respectively. The
above process is then performed for n system components with
the assumption that each element is independent from each other.
The important characteristic here is that we are more interested
in whether or not a component is online or offline. Conversely,
sequential MC methods consider the chronological operating cycles
of each system component. Given the MTTR and MTTF for each
component, the systems operating cycle can be determined by

TTFi = −MTTFi ∗ lnUi (3)

TTRi = −MTTRi ∗ lnUi (4)

where TTRi and TTFi is the Time to Repair (TTR) and Time to Fail
(TTF) for the ith component.

In both methods, we are interested in approximating an indicator
which quantifies the power systems reliability. For example, the Loss
of Load Probability (LOLP) Loss of Load Duration (LOLD), Loss
of Load Frequency (LOLF), and the Expected Energy Not Supplied
(EENS) are all appropriate indicators for reliability. As with all
approximation methods convergence of the indicator is important.
In MC methods it is common to use the Coefficient of Variation—
a measure of an indicators dispersion around its mean—as the MC
stopping criteria. The coefficient of variation is defined as

α =
σ(x)

E(x)
(5)

where x is the estimated value of the index, E(x) is the expectation
of the system index, and σ is the standard deviation of the estimated
expectation of the system index. Once the coefficient of variation
falls below some tolerance ε, simulations will stop. How quickly
the stopping criteria converges depends on which index is chosen.
Earlier works have determined that the Loss of Energy Expectation
(LOLE) converges at the slowest rate and should be used to
guarantee that all other indices are accurate [25].

3 Wave Power Modeling

3.1 Background of Ocean Wave Energy

Ocean waves are generated by the wind blowing along the surface
of the water. The wind’s speed, duration, and fetch all impact the
size of the ocean waves. We know that for latitudes between 30◦-
60◦ waves are bigger on the US West Coast than those on the
US East Coast due to the prevailing westerly winds. For example,
the total ocean energy available is 590 TWh/y and 240 TWh/y,
respectively [26]. By comparison, the total U.S. energy demand
for 2012 was approximately 4,000 TWh [27]. This suggests that
wave energy alone could satisfy 10-15% of our electricity needs.
This, however, is the best case scenario which doesn’t take into
consideration efficiency and transmission losses.

Ocean wave energy has some unique qualities that distinguish
itself from wind and solar energy. First, ocean wave energy has very
low hour-to-hour variability [28]. The seasonal dependence of ocean
energy is generally favorable because power production traditionally
peaks in the winter months when electrical demand is high. Energy
density for the ocean in the Pacific Northwest region is on average
30 kW/mcl [26]. By comparison, wind and solar densities are around
0.5 kW/m2 and 1 kW/m2, respectively [29]. Additionally, ocean
wave energy benefits from being close to highly populated areas in
the case of the United States of America, which significantly reduces
the need for long high-voltage transmission lines.

3.2 Ocean Energy Power Takeoff

Power takeoff (PTO) is the term used to describe the power
transferred from a mechanical system to an electrical system.
Modeling this interaction–and the underlying physics–is the first step
to assess the potential power output from a WEC device. From [31],
we write the linear equations of motion for a floating body as follows

mẌ = Fe + Fr + Fh + FPTO (6)

where Ẍ is the acceleration vector in all 6 degrees of freedom
(as shown in Fig. (1)), Fe is the wave excitation force (which is
the sum of the Froude-Kroylov and diffraction forces, Fr is the
radiation wave force, Fh is the hydrostatic stiffness force, i.e., the
buoyancy force, FPTO is the PTO force associated with float mass
m. Here, the dominant force in this equation tends to be the
excitation force Fe as it is the combination of both Froude-Krylov
and diffraction forces. Each of these forces are frequency dependent
meaning the calculation often requires frequency domain methods
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Fig. 1: Diagram showing the six degrees of freedom (6 DOF) that a
free floating body experiences. There are three translational motions
(heave, sway, and surge) and three rotational motions (pitch, yaw,
and roll) all occurring within the incident wave. From WEC-Sim[30]

.

and a Fourier transform to transform the forces into time-domain.
Although the most accurate, frequency methods are often complex
which make it desirable to use approximation methods instead. One
way to approximate this process is to use Morison hydrodynamics to
represent the excitation force as

Fe = Aη̈ +Bη̇ + kη (7)

where the terms A and B are frequency-dependent, device specific
constants, and η̈, η̇ are the acceleration and velocity of the wave
height time-series η.

The next step in developing the wave power model is to define the
power that is being extracted from the physical interactions,i.e., the
PTO force. Here, we use a simplified model and define the power
into the PTO mechanism as

PPTO = −FPTOv (8)

where v is the relative velocity between the float body and the PTO
mechanism. It should be noted that the negative sign in 8 is to
ensure that a positive PPTO corresponds to power being produced.
On the basis that the wave extraction device is sufficiently moored,
we can simplify the above equations such that the PTO mechanism
moves with respect to a stationary reference. As a result, the relative
velocity term v becomes the heave buoy velocity ż. Furthermore, if
we assume the device is a “wave follower” (shown in Fig. (2)), then
the device’s velocity becomes the velocity of the water. The result
of these assumptions implies the power produced becomes only a
function of the wave height time-series η.

3.3 Wave Height Time-Series Calculation

The methodology with which we construct the wave time-series for
the case studies that follow are predicated upon wave farm grid
integration studies [20]. Specifically, it uses data from a global
database of ocean buoys, the NDBC, and recreates the incident
wave spectrum using a Texel-Marsen-Arsole (TMA) [33] spectrum
assuming significant wave height, dominant wave period, and peak
wave direction are given.

The following expressions, adapted from [34], illustrate how to
generate the wave height time-series. Equations (9)-(11), show how
the wave height time-series can be generated.

Aj = 2
√
Sj(fj , θj)∆fj∆θj (9)

the equivalent amplitude Aj , is specified by the area under the
spectrum, where Sj(fj , θj) is the spectral density, and ∆fj and ∆θj

Fig. 2: L10 wave energy converter. Courtesy of Smithsonian
Magazine [32].

are the width of the bin in frequency and direction, respectively. This
method also assumes a right-handed coordinate system (x, y) where
x points towards the shore and y points upwards, along the shore.
We define the wave height time-series η, a function of x, y, and time
t, as

η(x, y, t) =

M∑
j=1

Aj cos (kjx cos θj + kjy sin θj − 2πfjt+ εj)

(10)
where εj is a random phase associated with each component, and the
local wave number kj is calculated for the local water depth h using
linear wave mechanics dispersion relation

(2πfj)2 = gkj tanh kjh. (11)

Equation (10) is solved in the frequency domain by making use of a
Fast Fourier Transform.

The downside to this method, unfortunately, is its inability to
account for interactions between WECs. This method can only be
applied to wave farms where devices are placed far enough from
each other to ignore device-to-device interactions. Parks with WECs
that are closely spaced devices have to consider the radiated waves
created from each WEC device. It is possible, and likely, that
radiated wave created from each device impact–both positively and
negatively–the overall power production. With regards to the former,
the radiated waves could be in phase with the dominate wave period
and therefore adding to the total force exerted on the WEC device.
There have been advances in optimal device placement which seek
to take advantage of this fact to generate more power [35].

4 Well-Being Analysis Applied to Ocean Wave
Energy

The Well-Being Analysis is an extension of the traditional MC
methods discussed in Section 2. The Well-Being Analysis [11–
15] gives key insights into power system reliability by leveraging
deterministic and probabilistic methods. Here, the deterministic
criteria provides an additional security criteria that allows each
system state Si to be categorized as either healthy, marginal, or at-
risk. It is common to categorize the system state using either a list
of pre-specified outages [36] or by looking at the system reserve
margins. In this paper, we use the latter.

Under these conditions, a system state is defined as healthy
if it has enough generation and transmission capacity to meet
the current electrical demand before and after performing the
deterministic criteria. In the case the system state fails the
deterministic criteria, the system is classified as marginal. If the
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Step 1 Generate:
- Wave power production schedule
- Generator and Line outage schedule
- Load schedule

i = 1
(first simulation point)

Step 2 Solve:
Deterministic Power Flow

Solution Converged?

Step 3 Perform:
- Deterministic Criteria Check

i = i+ 1

Passes Criteria?

System is
Marginal

System is
Healthy

System is
At-Risk

Step 4 Update Reliability Indices:
PH , PM , PR, DH , DM , DR
FH , FM , FR

α < ε?
(converged?)

Step 5 Compute:
Statistical output information

yes

no

yes

no

yes

no

Fig. 3: Flowchart for Well-Being Analysis methodology including
ocean wave energy.

power system has insufficient generation and transmission capacity
before or after the deterministic criteria is performed the the system
is categorized as at-risk. Upon classification of each system state,
statistical output information can be computed to quantify the
overall reliability. Here, we examine the probability (PH , PM , PR),
frequency (FH , FM , FR), and duration (DH , FM , FR) indices for
each of the three states. Details for how each of these indices are
calculated is found in [13, 36].

Figure 3 summarizes the proposed methodology to estimate the
reliability impact that ocean wave energy has to the power system.
Several years of NDBC buoy data is used–enough to capture trends
that take several years to occur, such as the warm and cold patterns
of El Niño and La Niña–to create the wave height time series
with equations (9)-(11). Again, with the assumption that the device
is a sufficiently moored wave follower, the power production is
calculated using (8). The production power output is then discretized
into monthly bins and probability distributions are created. This
last part is necessary because limiting the simulation time to the
time-series created from the NDBC data makes it is unlikely for
our reliability metrics to converge. Therefore, it is necessary to
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Fig. 4: One line diagram for a single area of the IEEE Reliability
Test System 1996 (IEEE-RTS) illustrating wave farm generator
replacements and experimental setup.

sequentially sample from representative distributions to capture the
seasonal and inter-annual trends in ocean conditions.

5 Results

The following sections will seek to answer the question of whether
ocean wave energy has an impact to power system reliability.
The experiments are setup in such as way as to identify potential
seasonal, inter-annual, and geospatial trends associated with utility
scale wave energy integration.

5.1 Experiment Description and Setup

For the purposes of these experiments, we make a few additional
assumptions to how the WEC devices are modelled. In addition
to being modelled as a wave follower, we assume that the PTO
is controlled in such a way that the PTO force is proportional to
velocity FPTO = BPTOż where BPTO is the PTO dampening factor.
As a result, (8) becomes PPTO = BPTOż

2. Additionally, we assume
that the devices are rated to a maximum active power output of 250
kW and BPTO is chosen such that each WEC has a capacity factor
of 50% for the month of January. The devices conform to the “wide-
spacing assumption” are assumed to be spaced 100 meters apart (so
as to ignore body-to-body interactions) and are in deep water (so
as to apply linear wave theory) [31]. We should note that while the
wide-spacing assumption does not prescribe a separation distance it
does suggest that the bodies are separated by a distance sufficiently
larger than the wavelength of the incident wave.

Fig. 5 shows the monthly power distributions, which will be used
to generate the wave power schedule, for three different sites along
the western coast of the United States. Namely, these sites are:

• Station 46041, Cape Elizabeth, 45 NM Northwest of Aberdeen,
WA;
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• Station 46050, Newport, OR;
• Station 46047, Tanner Banks, 121 NM West of San Diego, CA

Throughout the rest of this paper, we will refer to these sites as
Station A, B, and C, respectively.

For benchmarking purposes, we use the IEEE Reliability Test
System 1996 (IEEE-RTS) [37]. The system consists of 73 buses, 120
transmission lines, and 99 generators that add up to a total capacity
of 10,215 MW. In addition to the usual power system data, the model
contains an hourly load schedule for all 8,760 hours in a year, MTTF,
MTTR, and FORs for each generation and transmission asset. The
deterministic criteria used for the Well-Being Analysis is the loss-
of-largest-generator whereby, in each system state Si, the largest
generator is taken out-of-service and a power flow is performed on
the new system state. Lastly, the stopping condition for the MC
simulations is such that the coefficient of variation of the LOLE
index is less than 5%.

We implemented the proposed method in MATLAB, making
use of the open-source power system optimization toolbox
MATPOWER [38]. The two ways to model a renewable resource in
MATPOWER are generator modeling and negative load modeling.
In the former, a generator is placed on its associated bus and
the power output is the value of the renewable energy power
production. To ensure the generator is non-dispatchable, the rated
power of the device equals its current power production. In negative
load modeling, a renewable resource is modelled as a load with
demand equal to the negative power produced by the resource. While
negative load modeling is simpler, it is more beneficial to model
the resource as a generator. For example, it is possible to model
voltage limitations and voltage or power factor controls that the
farm may have. Considering this, our wave farms will be modelled
as a generator with a 0.95 to 1.05 p.u. voltage range and zero
reactive power capabilities. Future work in this area could take into
consideration reactive power control of these farms as it is typical
for interconnection agreements to require both 0.95 leading and
lagging power factor on the basis of FERC Order 827 [39]. Lastly,
for simplicity purposes we have ensured that wave farms are always
producing power; that is, never go offline for repairs. In a more
realistic scenario, the farm would have several derated states based
on the number of devices in the farm.

With the conditions outlined above, we perform various
experiments that explore the extent of the impact that a wave energy
farm has on the power system. We label these cases Case 1 through
Case 5. In Case 1, we replace a single 197 MW generation unit at
Buses 113, 213, and 313 (Bus 13 in the single area Fig. (4) with
197 MW wave farms characterized by Station A, Station B, and
Station C, respectively. Then, in Case 2 we replace a single 155
MW generation unit at Buses 123, 223, and 323 (Bus 23 in the
single area Fig. (4) with 155 MW wave farms that are characterized
using the same configuration as Case 1. In Cases 3 and 4, the wave
farms are placed at the same location as the previous two cases
but all three wave farms were characterized by the environmental
conditions from Station A. Lastly, Case 5 examines the impact when
wave farms were placed electrically close together. To do this, we
placed 197 MW and 155 MW wave farms (characterized the same
as Cases 1), at Buses x13 and x23, respectively, in each of the three
defined areas of the IEEE-RTS.

5.2 Simulation Results

Table 1 shows the results of applying this method to the base IEEE-
RTS and each of the cases listed above. Comparing Case 1 to
the Base Case, we notice the replacement of traditional generating
units in this scenario has a relatively small negative impact to the
reliability of the power system. This impact is suggested by the
decreases in PH andDH , as well as increases of PM andDM . This
indicates that the system leaves the healthy state more frequently,
thereby reducing the average time that the system is healthy over the
simulation period. By comparing values between Case 2 and the base
case, we observe a 5x increase in probability for the system to be
considered marginal and a 24% decrease in the average duration that

Table 1 Well-Being Indices for Different Wave Integrated Cases with
Generator Replacement

Index Base Case 1 Case 2 Case 3 Case 4 Case 5

PH 0.9992 0.9992 0.9988 0.9992 0.9988 0.9990
PM 0.0001 0.0001 0.0005 0.0001 0.0005 0.0003
PR 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007

FH 1.69 1.68 2.21 1.68 2.22 1.93
FM 1.54 1.65 2.02 1.64 2.04 1.89
FR 1.32 1.32 1.32 1.32 1.32 1.32

DH 5175 5220 3954 5222 3942 4516
DM 5.14 5.63 6.39 5.64 6.33 6.82
DR 10.8 10.8 10.8 10.8 10.8 10.8

Base Case: Original system without wave farms
Case 1: 3x197 MW units replaced by 197 MW wave - different profiles
Case 2: 3x155 MW units replaced by 155 MW wave - different profiles
Case 3: 3x197 MW units replaced by 197 MW wave - same profiles
Case 4: 3x155 MW units replaced by 155 MW wave - same profiles
Case 5: Replace 3x155 MW and 3x197 MW units, separated by one

transmission line, with wave of same capacity and profiles

the system is healthy. We should mention, however, that although
there is a large increase in the likelihood of being marginal between
Cases 1 and 2, the overall probability remains low. These results
suggest that even with a lower relative wave farm capacity on the
grid there is a larger impact to the reliability of the system. This can
be explained by the fact that geographical placement of WECs play
a bigger role to the reliability of the system than the total capacity.

Cases 3 and 4 show reliability values for scenarios where the
sites are all characterized by the same environmental profile. These
results indicate that having wave farms characterized by the same
geographical profile has no additional negative impact than having
geographically different profiles. Although not shown here, any
configuration of the three sites produces similar results to Cases 1
and 2. In contrast, differences between Cases 1 and 2 indicate that
there is large dependence on geographical placement of wave energy
farms. This effect is substantial, in that even while there are 100
MW less of wave energy capacity, the probability that the system is
marginal is five times larger. This impact is also reflected in every
other Well-Being index. It is important to note from Table 1 that
the probability, frequency, and duration data for the at risk states
are the same. These results suggest that wave energy alone does not
create additional failures on the system based on the LOLG criteria.
In fact, the only impact that wave energy has on the reliability of this
particular benchmarking power system is how often and how long
the system is close to failure.

In several real power systems, large amounts of renewable energy
are connected through one or two buses in a power system. The
results for Case 5 suggest that there is significant impact associated
with wave farms that are connected via electrically close buses.
However, looking at Cases 3 and 4, this effect is not a direct
consequence of the shared environmental profile. If we pull from
experiences in the wind industry, we know that there are several
issues associated with multiple large wind facilities connecting to
long radial lines. For example, reactive support becomes challenging
as renewable resources are limited in their reactive capabilities. It is
reasonable then to suggest that in future work an interesting open
question will be to explore these types of problems when integrating
utility scale wave energy farms.

5.3 Capacity Support for Integrating Ocean Wave Energy

In order to measure the amount of generation support that is
beneficial for the proposed wave energy configurations, we simulate
actions to restore the system to healthy status anytime that it
is deemed marginal. Specifically, we homogeneously increase the
capacity of each other wave generator in the system buy a small
incremental amount. We repeat this process until the system is
healthy or the amount of additional generation capacity is greater
than 50% of the nameplate system capacity. The probability
distribution function and cumulative distribution function for this
experiment are shown in Fig. 6. This experiment shows that by
adding 300 MW of generation capacity–or 3% of the total system
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Fig. 5: Monthly probability distributions for three different wave farms located on the western coast of the United States. Fifteen years of
NDBC data is gathered to capture monthly variability of power production

Fig. 6: Probability distribution function (top) and cumulative
distribution function (bottom) showing how much additional power
the system in Case 1 needs for it to be changed from marginal to a
healthy state. The data shown is binned to the nearest 100 for clarity.

capacity–the number of marginal cases is reduced by approximately
60%. This implies that because the wave energy is a variable
resource that there is still a strong need for dispatchable generation.

For completeness, we show the Well-Being indices for this case,
labeled as Case 6, and the comparative Case 1 in Table 2. While
the reduction in PM is expected, we see that there are significant
changes to all of the frequency and duration indices. We attribute
these changes to our efforts to reduce each marginal state. For
example, imagine that a combination of generation, transmission,
and wave schedule creates a period of time–say two weeks–where
the system would be marginal. Next, as we add more capacity to
the power system some, but not all, system states are now healthy.
However, if some of these marginal states are unable to be saved we

Table 2 Well-Being Indices for Case 1 and Homogeneous Unit Capacity
Increase

Index Base Case 1 Case 6

PH 0.9992 0.9992 0.9993
PM 0.0001 0.0001 0.0000
PR 0.0007 0.0007 0.0007

FH 1.69 1.68 1.70
FM 1.54 1.65 2.53
FR 1.32 1.32 1.31

DH 5175 5220 5138
DM 5.14 5.63 2.31
DR 10.8 10.8 10.8

Base Case: Original system without wave farms
Case 1: 3x197 MW units replaced by 197 MW wave - different profiles
Case 6: With Case 1 setup, homogeneously increase system capacity if

system is marginal

have then changed the frequency, and thereby duration, the system
transitions from one state to another. The gross effect is that we have
reduced the overall probability and duration is marginal but at the
cost of increased state transitions.

5.4 Effect of 100% Reliable Wave Units

In the experiments listed above, of the many assumptions we make
the most important one–at least with respect to reliability–is that we
assume each unit is 100% reliable. As mentioned very briefly before
this assumption is unrealistic. In this section the authors would like
to discuss some of the possible implications of this assumption and
what a more realistic scenario would look like.

Let us assume that the each wave generator follows a similar
generator availability as the same size generators they replaced–
95%. Due do the non-dispatchable nature of the resource we would
be correct in suspecting that the reliability indices, or at least the
probability of marginality, will be worse. However, we should be
aware of the fact that its the MTTR and MTTF, which are important
quantities for sequential MCS, are quite large in this scenario. This is
likely due to these sources being in a highly controlled environment
where the probability of there being unexpected failures are quite
low. In ocean wave energy, the devices will be exposed to the harsh
conditions of the ocean. Salinity will corrode parts faster and those
parts will take longer to repair due to them being harder to get to.
With this considered it is likely that the MTTF will be lower and the
MTTR longer indicating that 95% availability may be unrealistic.
Reports from the offshore wind industry suggests that a baseline
for offshore technology could be 93-94% [40]. However, this is a
much more developed industry with well established operation and
maintenance strategies.
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6 Conclusion

The work presented in this paper illustrates steps toward
comprehensive power system reliability studies that incorporate
utility-scale wave energy farms. Leveraging a combined deterministic
and probabilistic approach enhanced by wave energy modeling, we
have examined the impact that wave energy has on a benchmarking
power system at hourly intervals. The results suggest that, in this
particular system, wave energy has a small but negative impact
observed at hourly timescales. Importantly, the small observed
negative impacts do not create additional failure states, only an
increase in the probability that the system is marginal. Lastly, on
the hourly model we were able to mitigate marginal system states
with a relatively small increase in system capacity. In fact, by adding
approximately 300 MW of controllable generation we can reduce
60% of all marginal cases.

A major goal of this work is to provide a model with tunable
fidelity that can be incorporated meaningfully to many different
types of studies. In doing so it was necessary to develop a
benchmarking study that can be used as a reference for subsequent
research. Future work will address some of the modeling limitations
in the current approach–particularly how to model the power system
and WEC devices. We will include modeling of dependent outages
in order to investigate whether or not wave energy farms impact
the mechanisms of cascading failure. We will also model multiple
wave farm configurations (and substation connections) that include
distinct WEC models capturing state-of-the art commercial designs.
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