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A B S T R A C T

Earthquakes present an all-encompassing threat to electrical power systems. Many grid components are highly
vulnerable to direct and indirect earthquake damage. This paper presents a Monte Carlo based methodology to
evaluate the seismic impact on a large & complex power system. The proposed methodology uses the concept of
Performance Based Earthquake Engineering (PBEE) to quantify failure probabilities for individual assets in the
power system. Individual assets are modeled using an augmented bus-branch model which leverages commonly
used substation layouts to provide additional granularity. Seismic resilience is quantified using Monte Carlo sim-
ulations (MCS) to compute probability distributions for demand not served (DNS) in each studied scenario. The
proposed methodology is applied to the IEEE Reliability Test System 1996 (RTS-96), which is used as a repre-
sentative model of the Oregon network, and simulates the effect of a magnitude 8 earthquake. Simulated results
are compared to historical data and recent benchmarking studies that examine the effect of cascading outages on
the RTS-96. Results suggest that the probability of demand lost follows a comparable exponential trend to the
benchmarks. Furthermore, the experiments indicate that gradual failures can result in a more robust system, as
opposed to systems in which many hardened components fail simultaneously.

1. Introduction

Oregon, located in the Pacific Northwest region of the United States
of America, received its statehood in the year 1859 but, until the
1980s, residents were largely unaware of the Cascadia Subduction Zone
(CSZ) being an active seismic fault [1]. The state’s building codes were
amended and in 2011 the House Resolution 3 was passed by the Ore-
gon legislature and Oregon Seismic Safety Policy Advisory Commis-
sion (OSSPAC) was formed. OSSPAC was tasked with developing a re-
silience plan for the state of Oregon [1]. Today, there are multiple ini-
tiatives carried out by multiple organizations to make the state inhab-
itants aware and better prepared for this threat. For the electrical grid
specifically, in 1997 the Institute of Electrical and Electronics Engineers
(IEEE) developed IEEE Std. 693, a recommended standard practice for
seismic design of substation equipment [2]. This standard was revised
in 2005, and was recently revised again in late 2018.

This recent shift to a resilience based assessment of the power system
from a reliability based one has spawned a whole new field of research.
The necessity of being able to model the consequences of a high impact
low frequency disaster, like a magnitude 9.0 CSZ earthquake, has taken
center stage in the last decade. The damage statistics of the 2011 To-
hoku earthquake in Japan shows that, in the immediate aftermath of the
magnitude 9.0 earthquake, 4.4 million homes were out of power. For-
tunately, approximately 95% of these homes were restored with power
in seven days [3]. The main earthquake on March 11, was followed by
a big aftershock on April 7. This time again 4 million homes lost power
but almost all of them were restored in less than four days. This shows

the adaptive capability and disaster preparedness of the Japanese grid.
Similar phenomenon was observed between the magnitude 9.5 Chilean
earthquake of 1960, when complete electrical infrastructure of the coun-
try was capsized, and the magnitude 8.8 Maule-Chile earthquake of
2010 when the electricity supply was almost restored in 24 hours [4].
This was primarily the result of adding redundancies in the system [1].
Similar preparedness needs to be displayed by the WECC system in the
aftermath of a magnitude 9.0 CSZ event. To optimally add the redun-
dancies and preemptively retrofit the most consequential assets, critical
assets need to be identified. The proposed framework intends to build
the case for the same and provides a road map towards achieving this
goal.

While the field of seismic resilience as applied to power systems is
still being developed there are few academic papers that stand out. In
reference [5], a multi-phase resilience model was used to assess the re-
silience of the simplified British electrical network. Reference [6] ap-
plied a sequential Monte Carlo methodology to a small electrical net-
work to assess the resilience towards high wind speeds. So although
some applications of related methodologies are seen in literature, there
remains significant research opportunities in this area. This paper adopts
a Monte Carlo methodology that implores the use of the Performance
Based Earthquake Engineering (PBEE) [7–9] to ascertain the probabil-
ity that electrical assets will fail as the result of an earthquake.

The PBEE method was first developed by researchers at the Pacific
Northwest Earthquake Engineering Research (PEER) to assess the per-
formance of buildings and bridges when exposed to earthquake-like
shaking. This methodology is adapated for the power system because
of its effectiveness in dividing
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up the seismic risk assessment problem into four parts, shown in Fig. (1).
It has been identified in the post event analysis of several earthquakes
that the electrical assets most at risk to failure from prolonged shaking
are generators, transformers, loads, and breaker switches [3,10]. Trans-
mission lines, although a critical asset, have proven to be very resilient
to shaking [11,12], although secondary impacts such as landslides can
be devastating [13]. Breaker switches are unable to be modeled in the
traditional bus-branch model. To solve this issue the methodology devel-
oped by the authors in [14] is applied to convert a bus-branch model to
an augmented bus-branch model. This new augmented model is a more
accurate representation of the power system while maintaining a compa-
rable accuracy to the original bus-branch model. To asses the power sys-
tems vulnerability to earthquakes a non-sequential Monte Carlo method
is used. Further, a reliability assessments metric, namely the Demand
Not Served (DNS), is adopted to quantify the overall impact of an earth-
quake.

The remainder of this paper is outlined as follows. In Section 2 the
PBEE method and how to model the failure of electrical assets is ex-
plained. In Section 3 an overview of the augmentation of the traditional
bus-branch model is provided. Next, in Section 4 a method to quantify
the impact an earthquake has on the power system is outlined. Then in
Sections 5 and 6 the simulation setup, assumptions, and results are de-
scribed. Lastly, the concluding remarks that highlight the key findings of
this research are presented in Section 7.

2. Performance based earthquake engineering (PBEE) method

2.1. Background and mathematical formulation

The PBEE method is a deductive technique which divides the prob-
lem of determining the risk of structural failure, when exposed to seis-
mic shaking, into four steps. These steps are as follows:

• Hazard Analysis: The analysis starts by gathering information about
the seismic hazard H and the probability that the hazard will oc-
cur p[H]. More specifically, the probability that the hazard will occur
given location information about a particular asset A. This conditional
probability is denoted as p[H∣A].

• Structural/Response Analysis: The second step in the PBEE process
is to then determine an asset A’s response R to the particular hazard H.
This is primarily based on the location of the asset but device design
can also play a role, e.g., how the asset is placed on the foundation.
Similar to the Hazard Analysis, the probability that an asset will have
response R given a hazard H is denoted as p[R∣H].

• Damage Analysis: Next, given the response R of asset A in the pre-
vious step, the probability, and extent, of the damage D is calcu-
lated. This is formally defined as p[D∣R]. Unlike the previous steps,
the extent of damage is included in this step because, depending
on the response, an asset can be fully

operational, fully nonoperational, or somewhere in between. This
mostly dependant on device design and not location.

• Loss Analysis: The final step of the PBEE method is to evaluate the
overall loss L of asset A given the particular damage D, i.e., p[L∣D].
This value is final decision value which will inform an engineer about
the seismic risk for an asset.

There are multiple factors that affects the earthquake energy at the
equipment location. Some of these are 1) The distance of the equipment
from the epicenter of the earthquake, 2) The soil type at the location, 3)
The resonant frequency of the soil type and 4) The resonant frequency of
the equipment-foundation combination. Depending on these factors the
shaking observed by the equipment is either attenuated or intensified. It
also decides whether there will be any liquefaction observed at the cite.
Researchers at the Pacific Earthquake Engineering Research (PEER) use
Deterministic Seismic Hazard Analysis (DSHA) method to measure/as-
sess the PGA at any particular location [15]. In the DSHA method there
are two different uncertainties involved 1) Aleatory - Arising from the
randomness of the earthquake event and 2) Epistemic - Arising from the
models [16], [17], [18] and [19] used to calculate the ground motion
[20]. Evaluating ground motion at specific equipment locations we get
the P[R|H] from 1. Although for the purposes of this study, we assume
three ground motion intensities for three different regions of the RTS-96
system as shown in Fig. 7.

Using the conditional probabilities listed above, the probability of re-
sponse p[R], probability of damage p[D], and probability of loss p[L] are
defined using the law of total probability as:

(1)

(2)

(3)

As can be seen in (3), the seismic risk evaluation is broken up into
four separate problems through the use of intermediary variables H, R,
and D. Then, each variable is re-coupled through use of integration giv-
ing an overall measure of risk p[L]. For illustrative purposes, in Fig. (2)
shows the process of evaluating an asset that is exposed to two types of
hazards, has two possible responses, two damage states, and, based on
those damage states, has two loss states. In matrix form the above model
using the conditional probabilities p[H∣A], p[R∣H], p[D∣R], and p[L∣D]
are represented as:

Fig. 1. Flow chart of the PBEE method[9].
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Fig. 2. Example graphical representation of the PBEE method [21].

(4)

In this discrete form, the evaluation of (3) then becomes a simple matrix
multiplication with the solution being as follows:

(5)

2.2. Fragility functions

A fragility function specifies the probability of occurrence of an un-
desirable event, such as the failure of an asset or component or transi-
tion to undesirable state, as a function of a measurable response [9].
There are many candidate function types of fragility function modeling,
such as logistic functions [10], but in this research the log normal dis-
tribution function is used, as it is simple, and tends to provide a good
model for natural events that follow a logarithmic pattern of occurrence
or intensity, such as earthquakes.

The log-normal distribution function follows from the assumption of
a standard normal random variable Z. The log-normally distributed ran-
dom variable X is then defined as . The cumulative distribu-
tion function of X is then

(6)

This function, an example of which is shown in Fig. 3, is utilized in
this research as the prototypical form of the fragility function, parame-
terized by μ and σ.

For illustration purposes, Fig. (3) shows an example fragility func-
tion with a mean of and a standard deviation of
. Here, it can be calculated that the probability that an asset, given a
PGA response of R1, will be in either damage state D1 (p[D1∣R1]) or D2
(p[D2∣R1]). As shown, if the system response state R1 is 0.6, the proba-
bility of being in either damage state D1 or D2 is 23% and 77%, respec-
tively.

2.3. Critical electrical assets

Many historical events have given insight into which assets tend to
fail more frequently when subjected to an earthquake. In the aftermath
2011 Tohoku Earthquake, the list of damaged electrical assets were cat-
egorized into generation facilities, substations, transmission facilities,
and distribution facilities [3]. It was shown that the generation facili-
ties were fairly resilient as only 30 - 55% of the total generation capac-
ity was lost as a result of the earthquake. Damage to substations, on the
other hand, were substantial. Breakers, switchgears, and isolators–com-
mon components inside generation and substation facilities–failed at a
large rate which can cause a cascading effect leading to larger out-
ages. It was shown that, although some were damaged, that transmission
towers/lines and distribution poles/lines were fairly resilient. This was

Fig. 3. An example of a fragility function created using a log-normal distribution with
and . At the response the probability that the asset will be in

damage state D1 and D2 is 23% and 77% respectively.

also confirmed in the aftermath analysis of the 2001 Nisqually earth-
quake [10]. Transformers are of special interest because there are many
possible modes of failure; one of the more common being failure of
transformers and transformer bushings [22].

3. Augmented bus-branch model

Traditional power system models, called “bus-branch” models, fail to
model several critical assets inside of the substation. Inside each sub-
station are several elements that are designed to maintain a high level
of system reliability. Bus-branch models represents this information as
a single asset. While the model is less representative of a real power
system the assumption speeds up many types of analyses. An alterna-
tive, and much more accurate, power system model is the node-breaker
model. While node-breaker models may be more complex, the added
granularity is necessary to the study of substation-related contingen-
cies. Recent research has proposed a methodology to convert bus-branch
models into node-breaker models for contingency analysis. This, in fact,
is an essential step to the study of earthquake resilience. As such, this
methodology will be discussed here briefly, but a full treatment of the
matters, including a performance validation and comparison, can be
found in [14,21].

3.1. Node-Beaker models

Node-breaker models, generally used in energy management soft-
ware, show the layout and each switching element within the substa-
tion (see Fig. 4). System operators use these representative models for
real-time monitoring and control of the power system. Transmission
planners, on the other hand, tend to utilize bus-branch models because
the substation reduction can significantly reduce the number of vari-
ables needed to be solved.

In the event that there is a substation related contingency, it is
highly unlikely the whole substation is taken out-of-service. Most likely
only a few elements would be offline and power would still flow to
a some, if not all, feeders.

3
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Fig. 4. One line diagram of (a) Single Bus Single Breaker Type Configuration, (b) Ring Bus Configurations, (c) Breaker and a Half Type Configuration and (d) Double Bus Double Breaker
Type Configuration [21].

If one wanted to study this scenario, a bus-branch model becomes in-
sufficient. Conversely, since node-breaker models include every switch-
ing element, one is able to re-create this scenario and analyze its perfor-
mance.

3.2. From bus-Branch to augmented bus-Branch models

There exists several software options, e.g., PSS/E, DSATools, Pow-
erWorld, and eTap, that have the capability of node-breaker model-
ing. PSS/E and PowerWorld, for example, allow the user to create a
node-breaker model and then consolidate it based upon the status of
each breaker. These consolidated models are representative bus-branch
models and are used for various power system analyses. To leverage
these tools and to study the effect of substation related outages, a con-
version between bus-branch and node-breaker needs to be done in read-
ily-available software. To that end, an “Augmented bus-branch” (a-BB)
model was created in which a node-breaker model is represented us-
ing elements found in a bus-branch model. Using the methodology pro-
vided in [14], buses in the bus-branch model are replaced with sub-
station node-breaker substation models, as shown in Fig. (4), and then
each switch-breaker-switch tie is converted into branches with a small
impedance. The final result is a model where one can simulate the effect
of individual component outages within a substation. An illustration of
this process is shown on an example three-bus system in Fig. (5).

4. Analysis of power system resilience

Power system resilience encompasses the entire process of a fail-
ure, from response to the eventual repair. This paper assesses the power
system’s response to damage as it is subjected to various earthquakes.
To facilitate this process methods developed in the field of power sys-
tem reliability to effectively quantify how well the system performs
[23] are utilized. The reliability of the power system is quantified us-
ing either deterministic or probabilistic methods. Deterministic meth-
ods are typically chosen for the low computational cost and their ease
of implementation. Unfortunately, the problem of power

system seismic resilience is a probabilistic problem. This is due to the
fact that each asset – as a response to shaking/liquefaction – will fail
based on its own unique fragility function.

To solve the probabilistic reliability problem one can use either ana-
lytical or numerical methods. An analytical model represents the power
system, and its reliability, as a mathematical model which indicates
the structure and relationship between each component. Typically these
models are based off Markov models and are solved recursively [24].
The main disadvantage of these methods, however, is that as the sys-
tem increases in complexity the solution becomes intractable. Numerical
methods, on the other hand, use simulations to solve the problem; the
most common of which is the Monte Carlo Simulation (MCS) method.
While the biggest issue with numerical methods is state selection, MCS
solve this problem by randomly sampling the states for either a fixed
number of simulations or until some convergence criteria is met. Fur-
thermore, in situations where system complexity is high MCS become
extremely useful because they break up probabilistic problem into sev-
eral deterministic ones.

For these reasons, this research adopts the use of non-sequential MCS
methods [25–27] to assess power system resiliency. After each state is
randomly created, the power system is checked to see if there are any is-
landed systems. A power flow analysis is then performed on each, if any,
islanded system. It is important to note we are assuming that, after the
initial asset failures, each island is now stable. That is, the act of assets
failing do not cause any subsequent cascading failures.

The impact that the earthquake will have on the power system is
quantified using the Demand Not Served (DNS) metric which is defined
as

(7)

where Lik is the total demand in the ith island of the kth Monte Carlo
sample and m is the total number of islands after the kth sample
occurs. Anytime an is
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Fig. 5. (a) Bus-branch representation, (b) Node-breaker representation and (c) Augmented bus-branch representation of an example 3-bus system [14].

land would produce a non-converging power flow solution1 a load-shed-
ding scheme is employed in an attempt to save as much demand as pos-
sible. More specifically, the load-shedding scheme used in this paper will
incrementally reduce all loads by 10% of their initial value until a con-
verging power flow solution exists or there is no more load to shed.
Fig. 6 summarizes the proposed methodology used in this paper.

5. Experimental setup and assumptions

The proposed methodology is applied to the IEEE Reliability Test
System 1996 (RTS-96) [29]. This test system consists of 73 buses, 120
transmission lines, and 99 generators with a total capacity of 10,215
MW. Using the protection rules described in Section 3, the augmented
RTS-96 (a-RTS) system will consist of 33 DBDB, 26 RB, 10 BAH, and
4 SBSB substations. It is advantageous to use the RTS-96 model to test
the methodology because it has three electrically equal areas. This fact
is leveraged to mimic a CSZ earthquake scenario by assigning each area
of the power system to a representative area of Oregon as depicted in
Fig. 7. From left to right, each representative area is labeled as Area
3 (Oregon Coast), Area 2 (Willamette Valley), and Area 1 (East of Cas-
cades).

An earthquake scenario of magnitude 8 (H1 = 8M) on the Mo-
ment Magnitude Scale (MMS) is simulated on the RTS-96 system with
the seismic fault occurring to the left of Area 3. It is assumed that
each Area 1, 2, and 3 experi

1 Mathematically, a non-converging power flow is likely the result of an ill-condi-
tioned Jacobian matrix which, after a matrix inversion, produces inaccurate results. For
further information about possible reasons for non-convergence please see Reference [28].

ences a response of R1 = 0.3 g, R2 = 0.6 g, and R3 = 1.0 g PGA, re-
spectively. This is to simulate the dampening effect that occurs as an
earthquake propagates through the ground. Next, it is assumed there
are two different damage states–not damaged (D1) or damaged (D2)–for
each asset in the system. It is assumed that, as a result of the dam-
age, each asset will have two loss states: Operational (L1) and non-op-
erational (L2). With this in mind it can be said that and

where I is the identity matrix.
The damage analysis step in the PBEE method, which determines

p[D∣R], is calculated for breakers, loads, transformers, and generators
using (6) with and mean values

respectively. With this assump-
tion, it is implied that the breakers are the most fragile asset and genera-
tors are the least. This assignment of asset fragility is observed in histor-
ical earthquakes [3]. These fragility curves are shown in Fig. 8. Evalu-
ating these functions at their respective PGA of 1.0 g, 0.6 g, and 0.3 g,
the following matrices are obtained

(8)

Lastly, it is assumed that any non-damaged asset is still fully operational
and vice-versa for damaged assets, i.e, . Using this and the
assumptions listed above, 100,000 MCS for a magnitude 8 earthquake
scenario are performed.

5
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Fig. 6. Flowchart for proposed methodology.

6. Results & discussion

Benchmarking is used to measure the performance of a tool, such
as an analysis methodology or a software, using a trusted method and/
or dataset, in order to facilitate the comparison of the performance of
one tool to another [30]. Comparisons are drawn from existing bench-
marking studies performed on the RTS-96 system in reference [31] to
determine the validity of the proposed methodology. Each benchmark-
ing study examines the effect of various types of contingencies – specif-
ically cascading outages – on the RTS-96 system. For example, in the
DC Oak Ridge-PSERC-Alaska (OPA) methodology it is assumed that each
transmission line has a 1% failure probability. After a DC power flow
is performed the subsequent cascading failure is then examined when-
ever a transmission line exceeds 99% of its rated capacity. In addition
to synthetic data, historical outage data for the North American West-
ern Electricity Coordinating Council (WECC) region is used for further
comparisons [32]. Each of these benchmarking datasets are used to de-
termine if the output of the proposed methodology contains any simi-
larities, such as shape. Furthermore, even if the mode of failure may be
different, it is important to compare earthquake model used in this re-
search with that of other simulated large scale outages.

The cumulative probability distributions shown in Fig. 9 display
the differences and similarities between each models’ output. The plot
shown here is constructed in such a way to show that as the per-
cent of demand loss increases

(shown in p.u.), the cumulative probability decreases. For example, at
values close to 1 p.u. demand loss, the probability that the system will
lose more load approaches zero. This indicates that it is unlikely that
there would be total system failure. One similarity shared between each
plot is the exponential trend in demand loss.

However, a more direct comparison of our proposed methodology
can be made with the historical data (red trace in Fig. 9) because of
the heavy tail. In the historical plot, the heavy tail is the result of lim-
ited WECC outage data at high level of demand loss. The proposed
method, on the other hand, has a heavy tail because some outage sce-
narios produce a non-converging power flow solution. Another interest-
ing comparison can be made to the PRACTICE dataset (violet trace). In
the PRACTICE plot, a stair-step trend is seen where, in several ranges of
lost demand, the probability does not decrease. This is because of the
load-shedding schemes implemented in their model which tends to drop
whole loads versus small percentages. This is contrast to the presented
method in which the load is homogeneously decreased until all the loads
have been removed. As a result, the presented results show a similar
stair-step trend but only slightly less so than in the PRACTICE data set.

In an effort to measure the robustness of the presented model a dif-
ferent test case is analyzed in which we upgrade and degrade several as-
sets in the system. As stated above, the most fragile components tend to
be breaker branches with loads being the next most fragile asset. There-
fore, these should be seismically reinforced first. While it makes sense
in the presented model to retrofit breaker branches, upgrading a load
makes little sense because at the transmission level a load model typi-
cally represent an aggregate of several population centers and may in-
clude relatively large cities. The most realistic seismic retrofits then be-
comes breakers and transformers. The effect of upgrading and down-
grading these assets is simulated by decreasing and increasing the fail-
ure probabilities of these assets by an fixed 25% respectively. Results for
these simulations are shown in Fig. 10 and Table 1.

For lower levels of demand loss the seismic upgrades and down-
grades tend to have the desired effect whereby increasing resiliency de-
creases the probability of demand being lost. However, an interesting
observation is that decreasing the asset failure probability increases the
overall risk to the system because of the increased probability of larger
outages as observed in the Fig. 10. These results suggest that a decrease
in overall risk may actually require an increase in failure rate of some
assets. This phenomena can be described through the understanding of
ductile and brittle systems. In the context of seismic resilience, a ductile
system will tend to restrict the initial shaking and deform without com-
plete failure. Although the effect of cascading failures is not modeled, it
is likely that initial early failures actually provide a form of load shed-
ding, thus protecting the core system from complete failure. A brittle
system, on the other hand, resists any failure at low seismic levels, but
when it does fail at higher levels, it tends to fail completely. This topic
was discussed in the analysis of the Nisqually Earthquake [10] and it
was suggested that a system with higher seismic resilience is one that
is more ductile. This effect is quantitatively observed for our model in
Table 1. By breaking the system into many small sized islands, the sys-
tem is therefore able to serve more customers.

7. Conclusion

Previous studies in seismic reliability analysis of an electrical trans-
mission system present the probability of loss of individual assets us-
ing site specific ground motion. In this paper, an augmented bus-branch
model has been proposed to enable the study of electrical system earth-
quake resilience. Assets of particular interest are breakers, loads, trans-
formers, and generators. Leveraging the PBEE method, each asset in the
augmented model has a fragility function which describes its response
to shaking. As a proof a concept, the RTS-96 is used and the failure of
each asset is sampled using a Monte Carlo method. Experimental results
to historical data and benchmarking studies which examine the effect of
cascading outages on the RTS-96. Results show comparative exponential
trends with the benchmarking methods and the heavy tail of the histor-
ical data sets.

Model robustness is analyzed by seismically enhancing and weak-
ening assets in the system. The results suggest that a system with
more asset failures
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Fig. 7. Depiction of the earthquake scenario simulated on the IEEE RTS-96 system. For this scenario, a magnitude 8 on the Moment Magnitude Scale (MMS) occurs to the left (west) of
Area 3–representing the Oregon Coast. This causes an assumed corresponding ground shaking of 1 PGA, 0.6 PGA, 0.3 PGA for Area 3, Area 2, and Area 1, respectively.

Fig. 8. Fragility functions for four different types of assets: breaker branches (blue), loads
(green), transformer branches (red), and generators (magenta). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)

has a decreased risk of large outages due to earthquakes. The trade-off,
however, is that there is higher probability of a lower DNS scenario
occurring when the asset failures has been increased. This can be un-
derstood in the study of ductile and brittle systems. With respect to
earthquakes, making assets fail gracefully results in a power system that
is ductile which responds to ground shaking better than a brittle one.
This idea has been discussed in the past in a post-event analysis of the
Nisqually earthquake which occurred in 2001 but the effect of this on
power systems had not been fully explored.
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Fig. 10. Cumulative probability distributions for the augmented RTS model with base,
seismically robust (enhanced) assets, and seismically weaker (downgraded) assets.

Table 1
Statistical measures for the base, enhanced, and downgraded augmented RTS model.

DNS
[p.u.]

Number
of
Islands†

Buses
per
Island†

Base μ 0.25 10 50
σ 0.24 3 21

Enhanced μ 0.26 4 139
σ 0.27 2 91

Downgraded μ 0.24 19 24
σ 0.17 4 5

† Rounded to the nearest whole number
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