
Chapter 5 
Modeling Cascading Failures in Power 
Systems: Quasi-Steady-State Models 
and Dynamic Models 

Eduardo Cotilla-Sanchez 

Nomenclature 

QSS Quasi-Steady-State. 
.p.u. per unit. 
N Number of buses in the system. 
NM  Number of branches in the system (transmission lines and transformers). 
.NG The set of all generator buses in the system .NG ⊂ n = {1, 2, . . . , N}. 
.ND The set of all demand/load buses in the system .ND ⊂ n = {1, 2, . . . , N}. 
MW Megawatts. 
C Set of contingencies .C = {c1, c2, . . .} . 
.mi Cascading simulator model i . 
R Relative agreement of cascading path. 
.rg,i Generator equivalent series resistance. 
.Xd,i Direct axis synchronous reactance for the generator at Bus i. .X′

d,i is the 
transient reactance. . Xq refers to the quadrature axis reactance. 

M Generator inertia constant. 
D Generator damping constant. 
. Ṽi Complex voltage at Bus i: . Ṽi = |Vi |ejθi . 
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5.1 Modeling Cascading Failures in Power Systems: 
Quasi-Steady-State Models and Dynamic Models 

5.1.1 Introduction 

In essence, cascading failures emerge when outage mechanisms interact and show 
dependency patterns. Because modern grids incorporate new devices with new 
modes of becoming unstable, and these contribute to increasing the complexity of 
cascades, it becomes very important to understand how to place an upper bound on 
the modeling needs that one should implement when performing cascading analysis. 

Generally for advanced simulation of cascading outages, it is understood that we 
need the ingredients of dynamics and protection. However, in a majority of current 
approaches to simulating cascading, the efforts to model dynamics and protection 
are either shorthanded or so detailed that results are difficult to interpret and 
benchmark [8]. The challenges on choosing appropriate timescales between quasi-
steady-state and dynamic simulations, or other solutions, such as quasi-dynamic 
implementations, are also well justified in [14, 22]. An intended contribution of this 
chapter is to discuss and compare example simulators and experiments that have 
comparable protection elements and tunable dynamics in an open-source platform. 

Recently, Dai et al. [5] show that security dispatches with multiple constraints 
can increase cascading outage risk due to overload of critical lines. They also 
compare a QSS simulator and a dynamic simulator for their experiments. Similarly, 
counter-intuitive relationships between system loading levels and cascading risk 
were observed by [19] using the QSS simulator that we compare in this work with 
a closely related dynamic simulator. This work shows that increased risk can be 
observed at lower demand levels. 

One of the major challenges in the simulation is how to handle islands. This is 
necessary, and while some QSS simulators explicitly address separation and how 
to account for those (lines or load) losses, some of the dynamic simulators present 
challenges upon stability of islands. There are efforts to study the post-disturbance 
stability guarantees [16], and research groups have also explored control strategies 
to reconnect at appropriate times and mitigate further separation and damage [15]. 

Along with relatively recent benchmarking efforts, [2], the recommended stan-
dards to implement within these proposed benchmarks have also evolved and 
increasingly include additional types of relay mechanisms in cascading stud-
ies. Back to the PRC-023-2 standard, from 2012, one out of three mechanisms 
(overloads) could be implemented with a QSS simulator; however, the remainder 
of mechanisms requires some level of dynamic modeling. Newer standards and 
mechanisms, for example, inverter-interfaced renewable generation, will continue 
to push the complexity of required studies without a clear path to equitable compare 
across the methodologies used by different utilities, for example. 

More recent benchmarking studies, e.g., [11] by the IEEE Cascading Failure 
Working Group, have broadly implemented analysis with multiple simulators, 
including research-grade (sometimes open source) and commercial-grade method-
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ologies. The QSS simulation templates in [11] are used as baseline in this chapter 
for the proposed experiments in the remainder of this chapter. 

5.1.2 Metrics to Benchmark Experiments with QSS and 
Dynamic Simulators 

In addition to common cascade and resulting blackout statistics seen in previous 
benchmark studies, we adapt a metric of cascade path similarity, first introduced 
in [7] (Evaluating the Impact of Modeling Assumptions for Cascading Failure 
Simulation), the Relative Agreement of Cascading Path, R, defined as follows: 

.R(m1,m2) = 
1 
|C| 

|C|∑

i=1 

|Ai ∩ Bi | 
|Ai ∪ Bi |

, (5.1) 

where . m1 and . m2 are the two cascading simulators being compared, . Ai and . Bi 
are the sets of dependent events for each cascade, and C is the set of cascades 
under consideration. In summary, for all experiments developed in this chapter, we 
measure and record the following statistics at the end of each cascade simulation, 
for each simulator: 

• Blackout size: Total unserved load in per unit MW 
• Cascade size: The number of line failures and their sequence 
• Relative agreement of cascading path: R, defined as in Eq. 5.1 

Similar to these, as well as other related metrics, are regularly used to assess risk 
derived from cascading outages or common mode failures [17, 18]. Real datasets 
derived from transmission owners are particularly valuable and help calibrate 
simulator models. In [17], the authors cluster and analyze data from the NERC 
TADS (Transmission Availability Data System), obtaining useful results about the 
timing of the outages. They also highlight the opportunity to use an underlying 
network model so that electrical distance for the clusters of outages can be included 
in the analysis. 

5.1.3 A QSS Model Example 

The quasi-steady-state (QSS) example model dcsimsep [12] is used here to inves-
tigate assumptions of models that rely solely on the steady-state operation of 
the system. There are no generator or load dynamics in the model, and the 
only departures from steady-state conditions come from relay-based switching of 
overloaded transmission lines. 
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The dcsimsep simulator was originally developed at the University of Vermont, 
led by Prof. Paul Hines and with contributions by Dr. Pooya Rezaei, Prof. Maggie 
Eppstein, as well as the author of this chapter. While the horizon timeline is 
simplified into QSS and the power flow implemented uses the dc approximation, 
the simulator features a relatively sophisticated separation (islanding) scheme and 
the possibility to interface with external solvers to improve the chances of finding a 
feasible dispatch solution by balancing generation and demand. 

Here we focus the configuration of the simulation on the QSS group of 
parameters to better evaluate similarities and differences with respect to the dynamic 
simulator. For example, a tunable aspect in dcsimsep is the pseudo-time allowed for 
generator rampings, that is, discretizing the next QSS timestep where the power 
flow is calculated by performing a generator output projection before advancing the 
solver to the next steady-state timestep. By starting with a minimum fixed value, 
e.g., 60 seconds, of ramping that is allowed before resorting to load shedding to 
balance the island, we can later reproduce as similar behavior as possible in the 
dynamic simulator by tuning the machines’ inertia to equivalent values. 

5.1.4 A Dynamic Model Example 

By choosing a dynamic model example, COSMIC [4], that is built upon the same 
code baseline as the QSS example, we try to focus the experiments in the remainder 
of this chapter on their direct similarities and differences, while minimizing baseline 
noise coming from possible discrepancies across different families of simulators and 
implementations on substantially different platforms. 

The dynamics of a power system can be described with a set of hybrid differential 
(. f) and algebraic (. g) equations [3, 21], where hybrid refers to the addition of a set of 
equations (. h) that represent discrete events (for example, a relay trip). The resulting 
hybrid differential–algebraic system of equations (DAE) is given by 

. 

dx(t) 
dt = f(t, x(t), y(t), z(t)) 
0 = g(t, x(t), y(t), z(t)) 
0 > h(t, x(t), y(t), z(t)), 

(5.2) 

where .x(t) is a vector of continuous state variables linked to the differential 
equations, .y(t) is a vector of continuous state variables linked to the algebraic 
equations, and .z(t) is a vector of discrete state variables. There are different options 
in COSMIC to solve the differential portion of the system, for example, Matlab’s 
standard functions ode15s and ode23t [20], which feature an interface to compute 
a semi-explicit DAE system with a direct approach. The most challenging part of 
this approach is the initialization of the integration, in particular, right after discrete 
events. At these breaking points, COSMIC uses a nonlinear solver to calculate where 
to “reconnect” the upcoming state vectors with the appropriate family of differential 
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equations that match the current memory of the system. At this point in the time 
horizon, the options to implement the nonlinear solver in COSMIC are similar to the 
capabilities of dcsimsep, and one can customize the function fsolve to use external 
algorithms and settings that work better with the particular power system at hand. 
To speed up simulation by default, COSMIC uses a trust region method with dogleg 
implementation that only requires one linear solution per iteration. 

A relatively large simulation horizon is computationally expensive for dynamic 
simulators, and typically, there are developed strategies to speed up without 
compromising on the mechanisms that are characterized. In the case of the COSMIC 
simulator, a relatively simple approach is to use a variable step size. Here, for the 
purposes of these experiments and comparative exercise with the QSS simulator, we 
choose a 10 minute simulation horizon, sufficient to resolve the time constants of 
the relays. We implement several types of relays: 

• Branch temperature relays–overcurrent relays: In order to detect the overload 
of transmission lines, at each timestep, the simulator updates the temperature 
portion of the integer state variables (.ztemp,i) after comparing the current 
branch temperatures from the differential state vector (. x(t)) with the maximum 
temperature limit for each branch (calculated from the standard IEEE rate line 
limits) [3]. 

• Under-voltage and under-frequency relays: After detecting instantaneous off-
nominal values for voltage or frequency at each bus (or generator bus), the 
simulator will apply a relay delay and trip if necessary. In the experiments for 
this chapter, we use a threshold of 0.87 p.u. for under-voltage and 0.985 p.u. for 
under-frequency. 

• Distance relays: Here we also configure a relatively simple Zone 1 distance relay, 
tuned at 0.9 p.u. 

Another feature implemented in COSMIC to accelerate the simulation is the 
calculation of an equivalent generator set of dynamics for those buses where 
multiple units exist. We aggregate inertia and capacity as well as tuning the 
equivalent machine controls. Adapted from [3], the description of the machine 
dynamics for each generator in COSMIC can be summarized by the following 
elements: 

The base equation related to machine dynamics is the standard second-order 
swing equation, describing rotor speed for a generator connected to Bus i: 

.M 
dωi 
dt 

= Pm,i − Pg,i − D(ωi − 1), (5.3) 

where M is the machine inertia constant, .Pm,i is the mechanical power input, . Pg,i 
is the electrical power output, and D is the machine damping constant. 

The rotor angle is given by the equation: 

. 
dδi (t) 
dt 

= 2πf0(ωi − 1), (5.4) 
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Fig. 5.1 Diagram of the machine exciter model implemented in the COSMIC dynamic simulator 

and COSMIC allows the choice between a standard angle reference or a center-
of-inertia reference. This feature is useful to compare and validate across dynamic 
simulators. 

The transient open circuit voltage magnitude is calculated with the differential 
equation: 

. 

d
∣∣∣E′

a,i(t)
∣∣∣

dt
= −

∣∣E′
a,i

∣∣ Xd,i 
T ′
do,iX

′
d,i 

+
(
Xd,i 
X′
d,i 

− 1
)
|Vi(t)| 
T ′
do,i 

cos(δm,i(t))+ 
Efd,i  
T ′
do,i 

, 

(5.5) 

where .Xd,i and .X′
d,i are the direct axis generator synchronous and transient 

reactances, respectively, .T ′
do,i is the direct axis transient time constant, and . Efd,i  

is the machine exciter output (see Eq. 5.6). The three equations described above 
describe the basic physical properties of the generator, adding up to a 3rd-order 
differential equation system. In order to complete the machine model, we add 
two additional sets of equations describing the machine exciter and the machine 
governor. 

The machine exciter equations define two of the differential variables in . x(t): 

. 

dEfd  
dt = 1 

TE

(
KE.sigm

((
1 − TA 

TB

)
E1 + TA 

TB 
(Vref − Vt )

)
− Efd

)

dE1 
dt = 1 

TB

(
Vref − Vt − E1

)
, 

(5.6) 

where . TA, . TB , and .KE are exciter time constants, and .sigm(·) we write as a 
differentiable sigmoidal function that acts as a limiter between .Emin and .Emax . 
We implement this function in a way that is similar to rail limiters whereby 
the smooth joints in between linear segments are encoded as differentiable cubic 
splines. Figure 5.1 illustrates this simplified exciter configuration. 

Similarly, we use a similar differentiable rail limiter technique to complete the 
dynamic model of the generator with a machine governor, describing the mechanical 
forcing given a deviation in the machine speed: 



5 Modeling Cascading Failures in Power Systems: Quasi-Steady-State. . . 181 

1 
R 

Pref 

Pm 

Rmax 

Rmin 

Pmax 

Pmin 

1 
Tt 

1 
s 

Fig. 5.2 Diagram of the machine governor model implemented in the COSMIC dynamic simulator 

. 
dPm 
dt 

= sigm
(
1 
Tt 
(sigm

(
Pref − 

1 
R

%ω

)
P2 − Pm)

)
, (5.7) 

where R and . Tt are the droop and time constants, respectively. Figure 5.2 describes 
the interactions among the governor variables and the rail limiters for .Pmin versus 
.Pmax and .Rmin versus .Rmax. 

5.1.5 Benchmark Experiments 

For the experiments in this chapter, we focus on the test system IEEE RTS-96 [9], 
which was also proposed as a good benchmarking network by [10] after  some  
initial adjustments to be initially dispatched as .N − 1 secure. We keep the same 
modifications for this work. For each cascading failure simulator, we subjected the 
test grid to .N − 2 and .N − 3 line contingencies. We enumerate all the . N − 2 
contingencies (up to a total of 7140 runs) and then simulate an equal number of 
.N − 3 contingencies, randomly sampled, and resulting on a total of 14,280 runs for 
all .N − 2 and .N − 3 contingencies. 

For the dcsimsep simulator, we implement the baseline redispatch mechanisms 
included in the code package, without additional emergency control activated [6, 
13, 19]. In terms of protection, we focus on the mechanisms of separation, load 
shedding, and line overload relays. At the end of each QSS simulation epoch, we 
record the initial exogenous events, the dependent endogenous events (including 
lines tripped), and total load lost. 

For the COSMIC simulator, we also implement the baseline redispatch mech-
anisms, in this case an ac algebraic equations resolve that “reconnects” the new 
algebraic state after a discrete event with the necessary dynamics from the generator 
machines, exciters, and governors. This is handled as a standard Differential– 
Algebraic Equation (DAE) solution across discrete events [21], and for consistency, 
we do not implement additional controls as it is the case in recent applications for 
this simulator [1]. It is important to note that one of the main relay mechanisms in 
COSMIC, the temperature relay, is an aggregate relay mechanism inspired by the 
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Fig. 5.3 Loss of load distribution for all N − 2 and equal size set of random N − 3 contingen-
cies. Comparison between dcsimsep, normalized historical data reference, and benchmark QSS 
simulators from [11] 

line overload relay in dcsimsep. In order to keep similar rate overload constants 
for this work, we extended the dynamic simulation horizon in COSMIC to 10 
minutes, so that we are able to observe those cascades that have an equivalent time 
horizon in the QSS implementation. Besides the temperature/overload relay, we also 
implement separation, under-frequency and under-voltage load shedding, distance 
relays, overcurrent relays, and generator off-nominal frequency trips. At the end of 
each dynamic simulation epoch, we also record the initial exogenous events, the 
dependent endogenous events, and total load lost. 

5.1.5.1 Size of Blackouts: Load Distributions 

The first metric we analyze from the described experiments is the size of the 
blackouts observed, measured in MW of load not met. We plot these results as a 
complementary cumulative distribution function (CCDF) that allows us to compare 
the trends across simulators, and in particular, the areas corresponding to small, 
medium, or large blackouts, depending on the x-axis region that we focus on. For 
example, a trace with a heavy tail corresponds with a relatively large probability of 
observing large blackouts. 
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Fig. 5.4 Loss of load distribution for all N − 2 and equal size set of random N − 3 contingen-
cies. Comparison between COSMIC, normalized historical data reference, and benchmark QSS 
simulators from [11] 

In Fig. 5.3 we can observe the new loss of load distribution obtained with the QSS 
simulator dcsimsep (blue trace) and how it compares with those QSS simulators 
benchmarked in [11]. Distribution results suggest that dcsimsep produces blackouts 
similar in size with the mid-range group of those in the benchmark set (all grayed 
out traces for clarity). Also from [11], we highlight (light green trace) the historical 
data reference, adjusted in per unit to the size of the maximum blackout in the RTS-
96. For medium–large blackouts, the dcsimsep trace appears similar to the historical 
reference, a bit under for certain blackout sizes, but overall with a comparable slope. 

A recommendation from this analysis is that in order to produce larger blackout 
sizes with an open-source simulator such as dcsimsep, one could adjust the 
separation mechanisms. Effectively we would be fine-tuning the definition of when 
to consider an island separated as a brownout, continuing to recursively re-balance 
smaller areas, versus considering that the cascade is finished from the point of view 
of the original connected components in the network, because we cannot reliably 
dispatch such small areas. This is relevant as we increase the number of microgrids 
in our electrical network, as well as other modalities of distributed control, we 
need to reflect the mechanisms for separation and re-connection accordingly in the 
simulator, both QSS and dynamic [15]. 

Analogously, in Fig. 5.4 we can observe the new loss of load distribution obtained 
with the dynamic simulator COSMIC (dark green trace) in the context of the 
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Fig. 5.5 Lines tripped distribution for all N − 2 and equal size set of random N − 3 contingen-
cies. Comparison between dcsimsep, normalized historical data reference, and benchmark QSS 
simulators from [11] 

datasets from [11]. In this case, small and medium blackout sizes follow fairly 
well the historical trend and benchmark QSS simulators. For large blackout sizes, 
the relatively heavier tail captures the behavior of possible dynamic instability for 
networks that are largely disturbed and tend to produce full outages (although this 
is not exclusive to dynamic simulators, as the trace corresponding to PSS/e shows, 
with some higher probabilities for the maximum size. That being said, the trace 
corresponding to COSMIC reflects the appearance of very large blackouts that 
are not full system collapse, and this certainly merits further exploration of the 
individual cascades so that it sheds light on the particular mechanism differentiating 
from the QSS trends in this benchmark ensemble. 

5.1.5.2 Line Distributions 

The second metric we analyze for this set of experiments is the distribution of 
transmission lines that were outaged. It is important to note that we include in this 
section all the lines that were removed from service in the .N−2 and .N −3 cascades, 
either by the initial events or by the subsequent dependent relay trips. In the next 
section, we will explore the differences between the two subsets (initial or dependent 
outages) in terms of line criticality by means of frequency of appearance. 
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Fig. 5.6 Lines tripped distribution for all N − 2 and equal size set of random N − 3 contingen-
cies. Comparison between COSMIC, normalized historical data reference, and benchmark QSS 
simulators from [11] 

In Fig. 5.5, we compare the distribution of the number of lines outaged for 
dcsimsep with the historical reference and simulator benchmarks from [11]. It is 
encouraging that the trace shape for the medium–large size cascades (4,5,6, or 7 
lines) approaches the historical trend. 

We also note the difference with other simulators that obtain a much larger 
number of transmission lines tripped. As we discussed earlier with the threshold 
to consider the system separation as a terminating event or part of the cascade, it 
would be important also to define what is an upper bound on lines outaged for 
a given system size where one would expect the cascading simulation to still be 
meaningful. In this experiment’s scale, for a system size like the RTS-96 with 120 
lines, it is difficult to interpret how the simulation mechanisms continue in a similar 
regime after the relays tripped line .100th  out of 120, for example. It appears that 
the overall distribution of lines cascaded is most similar between the dcsimsep and 
PCM QSS simulators. 

For the dynamic simulation comparison, in Fig. 5.6, we see a similar trend for 
the lines outaged distribution in the COSMIC simulator, whereby the medium size 
cascades matched most closely the historical trend among all the benchmarks. 
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Fig. 5.7 Side-by-side comparison between dcsimsep and COSMIC simulators for the distribution 
of demand lost 

5.1.5.3 Summary of Statistical Similarities and Differences Between 
dcsimsep and COSMIC 

Here we compare side by side, according to the previous metrics in this section, our 
QSS example simulator, dcsimsep, and our dynamic example simulator, COSMIC. 
First for distribution of load lost, in Fig 5.7, we see higher similarities for small 
blackouts; however, for medium and large blackouts, the distributions for demand 
loss start to diverge. It is worth to note here that as we have discussed so far, 
we prioritized in this batch of experiments to equalize the overload relays to 
be able to compare the trajectories of the cascades between both the QSS and 
dynamic simulators. Another approach for future work could be to maintain as 
much similarity as possible with load shedding relays as well, although this is 
best achieved by working in some additional dispatch control, a feature that both 
example simulators implement. 

Figure 5.8 suggests that the similarities between the lines tripped distributions are 
stronger and follow a very similar pattern for medium-sized cascades. The output in 
dcsimsep produced a few longer cascades, but the probability of those quickly falls. 
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Fig. 5.8 Side-by-side comparison between dcsimsep and COSMIC simulators for the distribution 
of lines outaged 

5.1.5.4 Cascade Sequence Benchmarks 

In this section, we turn to explore the similarities and differences of the cascading 
sequences for both the QSS and dynamic simulators, with the same set of . N − 2 
and .N −3 experiments on the IEEE RTS-96 network. First, we measure the relative 
agreement of cascading path, R, among all the simulated initiating events, and then 
solely grouped by .N−2 or .N−3 types. Table 5.1 shows that the agreement between 
the simulators is substantially higher when analyzing the .N − 2 initiating events, 
whereas R decreases on the .N − 3 subset. The number of cascades that fall in one 
type versus the other is approximately a 25%/75% split. 

5.1.5.5 Rank of Top 5 Critical Components Involved in Initial Outages 

Now we turn to discuss the involvement of common initiating sets of lines in 
subsequent outages. From the set of .N − 2 and .N − 3 experiments, we count and 
rank those lines that more frequently appear as initial outage at the beginning of a 
cascade. In Table 5.2, we compare the results for dcsimsep on the left panel with 
COSMIC on the right panel. The five rows of data across both panels represent the 
Top 5 branches (including those that are tied in one of the five given positions), the 
line identifier, and the frequency of appearance in the full set of simulation epochs. 
After highlighting in boldface the line numbers that are common to both simulators, 
we can observe a very high degree of similarity, whereby 100% of those initial 
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Table 5.1 Relative agreement of cascading path for dcsimsep (. m1) and  COSMIC (. m2) among all 
simulated initiating events and the .N − 2, .N − 3 subsets 

.R(m1,m2) . |C| 
.N − 2 and .N − 3 0.2686 103 cascades 
.N − 2 0.5641 26 cascades 
.N − 3 0.1688 77 cascades 

Table 5.2 Rank of Top 5 critical components and their frequency of appearance within initial 
outages that cause cascades 

dcsimsep COSMIC 
Rank Line number Frequency Rank Line number Frequency 

Top 1 30 . ×18 Top 1 27 . ×8 
Top 2 7 . ×15 Top 2 7, 30 . ×7 
Top 3 27, 31 . ×14 Top 3 28, 31, 69 . ×6 
Top 4 26, 66, 69 . ×12 Top 4 25, 29, 66, 119 . ×5 
Top 5 28, 29, 67 . ×11 Top 5 26, 67, 101 . ×4 

contingencies that are Top 5 for dcsimsep appear on the panel corresponding to the 
COSMIC simulator, with only 3 lines that are not a commonality appearing on the 
dynamic simulator results. 

5.1.5.6 Rank of Top 5 Critical Components Involved in Subsequent 
Outages 

Similarly to the previous subsection, we now discuss the involvement of common 
subsequent sets dependent lines outages, with respect to both simulators, from the 
set of .N − 2 and .N − 3 experiments. In Table 5.3, we compare again the results 
for dcsimsep on the left panel with COSMIC on the right panel. In this case, after 
highlighting in boldface the line numbers that are common to both simulators, we 
also obtain a very high overall similarity on both sets, with an 80% agreement on 
the lines that appear on the Top 5 critical elements for both dcsimsep and COSMIC. 
Only lines 11 and 25 appeared in one or the other simulator but not both. It is 
important to note that overall, the set of dependent critical outaged lines is also 
more concentrated in fewer number of lines with higher frequency of appearance 
in cascading sequences, for both the QSS and the dynamic simulator. This suggests 
that any mitigation measures that focus on the propagating lines are likely to help 
reduce the overall risk, independently of whether one uses the QSS or the dynamic 
simulator version for this test case. 
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Table 5.3 Rank of Top 5 critical components and their frequency of appearance within initial 
outages that cause cascades 

dcsimsep COSMIC 
Rank Line number Frequency Rank Line number Frequency 

Top 1 119 . ×58 Top 1 118 . ×26 
Top 2 11 . ×16 Top 2 119 . ×26 
Top 3 30 . ×16 Top 3 30 . ×8 
Top 4 41 . ×16 Top 4 41 . ×7 
Top 5 118 . ×14 Top 5 25 . ×6 

5.1.6 Conclusions and Future Work 

In this chapter, we have presented a discussion of similarities and differences 
between quasi-steady-state (QSS) and dynamic models of cascading outages. We 
discuss new findings obtained from side-to-side comparison experiments between 
QSS and dynamic simulators that stem from related branches of open-source codes. 
We also positioned this analysis with respect to previous results obtained by recent 
benchmarking studies that included both research-grade and commercial simulator 
software. For future work, we recommend the concurrent use of multiple simulation 
fidelities in cascading outage studies, as well as the inclusion, early in the workflow, 
of real datasets for calibration and validation of the relay mechanisms in the models 
being considered. 
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